
The Journal of Systems & Software 197 (2023) 111558

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Architectural tactics in software architecture: A systematicmapping
study�

Gastón Márquez a,∗, Hernán Astudillo b, Rick Kazman c

a Department of Electronics and Informatics, Universidad Técnica Federico Santa María, Concepción, Chile
b Department of Informatics, Universidad Técnica Federico Santa María, Santiago, Chile
c Department of Information Technology Management, University of Hawaii, Honolulu, HI, USA

a r t i c l e i n f o

Article history:
Received 16 September 2021
Received in revised form 8 November 2022
Accepted 12 November 2022
Available online 22 November 2022

Keywords:
Architectural tactics
Systematic mapping study
Software architecture
Quality attributes

a b s t r a c t

Architectural tactics are a key abstraction of software architecture, and support the systematic design
and analysis of software architectures to satisfy quality attributes. Since originally proposed in 2003,
architectural tactics have been extended and adapted to address additional quality attributes and
newer kinds of systems, making quite hard for researchers and practitioners to master this growing
body of specialized knowledge. This paper presents the design, execution and results of a systematic
mapping study of architectural tactics in software architecture literature. The study found 552 studies
in well-known digital libraries, of which 79 were selected and 12 more were added with snowballing,
giving a total of 91 primary studies. Key findings are: (i) little rigor has been used to characterize and
define architectural tactics; (ii) most architectural tactics proposed in the literature do not conform
to the original definition; and (iii) there is little industrial evidence about the use of architectural
tactics. This study organizes and summarizes the scientific literature to date about architectural tactics,
identifies research opportunities, and argues for the need of more systematic definition and description
of tactics.

Editor’s note: Open Science material was validated by the Journal of Systems and Software Open Science
Board.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Software architecture is the discipline that structures every
phase of a software project, serving as the blueprint and defining
the tasks that must be performed by design and implementation
teams (Bass et al., 2003, 2013). A key in designing software
architectures is the satisfaction of quality attribute requirements
(QAs) (Bass et al., 2013). QAs impact crucial aspects of the system,
like run-time behavior, robustness, security, and user experi-
ence. Although the various QA communities have developed their
own vocabularies, scenarios have become an accepted method to
specify QAs (Bass et al., 2001a).

One strategy proposed to represent the fundamental design
decisions for achieving QAs are architectural tactics. As defined
in Bachmann et al. (2003a), Bachmann et al. (2003b), Bass et al.
(2003) and Bass et al. (2013), architectural tactics are the key
design decisions that influence the control of a quality attribute.
Architectural tactics influence the system’s response to a spe-
cific stimulus that is important to the achievement of a QA.

� Editor: Matthias Galster.
∗ Corresponding author.

E-mail address: gaston.marquez@usm.cl (G. Márquez).

Architectural tactics have arisen from the collected experience
of architects over the decades. As such, they are a foundation
of knowledge, providing a systematic set of architectural design
decisions.

The importance of architectural tactics lies in the fact that
they are primitive solutions that sustain architectural patterns
obtained in software architecture. In this regard, most architec-
tural patterns consist of (are constructed from) several different
architectural tactics. Harrison and Avgeriou (2010) address the
relationship between architectural patterns and tactics in more
detail. They propose a model that shows how architectural pat-
terns, quality attributes, and tactics relate to each other and how
they relate to the overall architecture. Additionally, the model
provides the instance for discussing the detailed ways in which
implementations of tactics affect the architectural patterns used.
The model also describes an architectural pattern as a solution to
an architectural problem, often described as a set of architectural
concerns. The architectural pattern satisfies multiple architectural
concerns but can also have side effects on other architectural
concerns. An architectural pattern can have different variants,
and the variant used is often based on the tactics employed. For
this reason, architectural tactics play a fundamental role because
patterns package tactics (Bass et al., 2013).

https://doi.org/10.1016/j.jss.2022.111558
0164-1212/© 2022 Elsevier Inc. All rights reserved.



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Interest in architectural tactics has grown significantly over
the years in the software architecture community. In this regard,
the Software Engineering Institute (SEI) has been relevant when
it comes to the investigation of architectural tactics. Initially
discussed in technical reports (Bachmann et al., 2003a), archi-
tectural tactics were introduced to support understanding the
relationship between quality attribute requirements and architec-
ture design. SEI introduced the concept of the general scenario
as a precise and independent mechanism for specifying quality
attribute requirements (Bass et al., 2001b). In this context, the
idea of architectural tactics emerged, whose initial objective was
to represent the characterization of architecture decisions that
are used to achieve a quality attribute. Additionally, architecture
tactics were used to satisfy response measures based on quality
attributes concerning quality models.

On the other hand, the interest in architectural tactics has
also yielded that the original definition of architectural tactics
has had to evolve in order to address design decisions in other
emerging domains such as cloud (Procaccianti et al., 2014), cyber-
foraging (Lewis and Lago, 2015a) and cyber-security (Ullah and
Babar, 2019). Nevertheless, this evolution of architectural tactics
has implied that information about how they are identified, the
mechanisms for describing them and the data sources used to
recognize them is increasingly unknown. This causes a lack of ex-
plicit knowledge about the fundamentals of architectural tactics
in these emerging domains, which limits the systematic replica-
tion of the characterization of new architectural tactics to address
design decisions in modern systems. The definition and descrip-
tion of architectural tactics taxonomies presented in Bass et al.
(2013) address seven quality attributes; however, there is little
research on which quality attributes have been addressed by ar-
chitectural tactics research. This implies that it is unclear whether
the architectural tactics community has maintained an interest in
these seven quality attributes or has addressed others. Moreover,
there is not enough research that systematically compiles updates
or new proposals for architectural tactics taxonomies.

For this reason, this paper defines a systematic mapping study
(SMS) to gather primary studies to describe and illustrate the
body of knowledge generated by architectural tactics. We have
investigated several perspectives on architectural tactics: qual-
ity attributes, techniques and methods for defining them, data
sources for recognizing them, criteria for characterizing them,
and new or updated architectural tactics taxonomies. Our main
contribution is the systematic study showing the state of the art
regarding architectural tactics in software architecture research.

This remainder of this paper is structured as follows: Section 2
describes the background; Section 3 describes the systematic
mapping design to conduct our study; Section 4 details the study
results; Section 5 discusses key findings; Section 6 addresses
the threats to validity; Section 7 discusses related studies; and
Section 8 summarizes and concludes. Additionally, we have cre-
ated a repository (Márquez et al., 2022) containing the Open
Science material of our study, which corresponds to (i) the search
protocol used in our study, (ii) the tables and figures of the article,
and (iii) the metadata obtained from the primary studies.

2. Background

Initially introduced in Bass et al. (2003) and refined in Bass
et al. (2013), an architectural tactic (henceforth just ‘‘tactic’’)
is a design decision that influences the achievement of a spe-
cific quality attribute response. Quality attribute requirements
specify system responses that, in turn, are critical to the achieve-
ment of the system’s business or mission objectives. The initial
research describes taxonomies of tactics on the following qual-
ity attributes: security, availability, performance, modifiability,
interoperability, usability and testability (Bass et al., 2013).

The literature offers several definitions of tactics:

• An architectural tactic is a design decision that helps achieve
a specific quality-attribute-response, and that is motivated by
a quality-attribute analysis model (Bachmann et al., 2002).

• An architectural tactic is a means of satisfying a quality-
attribute-response measure (such as average latency or mean
time to failure) by manipulating some aspect of quality
attribute model (such as performance queuing models or
reliability Markov models) through architectural design de-
cisions (Bachmann et al., 2003a).

• Tactics identify and codify the underlying primitives of pat-
terns to solve the problem of the intractable number of
patterns existing (Bass et al., 2000).

• Tactics are ‘‘architectural building blocks’’ from which archi-
tecture patterns are created (Bass et al., 2003).

• An architectural tactic is a design decision that influences
the control of a quality attribute response. Each architectural
tactic is a design option for the architect (Bass et al., 2013).

On the one hand, definitions point to tactics as design deci-
sions aimed at satisfying quality attributes. In this regard, stimuli
or models can express these attributes. Since the design of a
system is a collection of decisions, some of those decisions may
help to control quality attribute responses and affect the response
of a system to some stimulus. On the other hand, the definitions
also consider tactics as part of patterns, i.e., atomic elements of a
pattern’s structure.

Often, the appropriate application of tactics depends on con-
text, which is represented by a general scenario with six essential
parts to contextualize quality attribute requirements (Bass et al.,
2013) (see Table 1).

To illustrate, Fig. 1 shows the general scenario for availability.
This describes the dimensions of availability-relevant require-
ments that must be considered in the design of an architecture.
Other general scenarios have been described for the QAs of de-
ployability, energy efficiency, integrability, modifiability, perfor-
mance, safety, security, testability, and usability (Bass et al., 2013,
2021). Each of these QAs has its own set of tactics.

2.1. Illustrative example

Let us consider the following quality attribute requirement
for an Ambient-Assisted Living (AAL) system: The system must be
99.9999% available to alert family members and emergency units if
an older adult falls inside the home. Although this requirement is
relevant multiple quality attributes (such as interoperability and
performance), we address availability in this illustrative example.
One can infer, from this requirement, that the medical devices
that monitor the elderly and the system components associated
with such monitoring should be fault-tolerant. Analyzing the risk
surrounding this requirement in the AAL system’s architecture,
an architect might consider the Data Receiver component (the
component that receives data from the medical devices) as one
of the critical components. To better probe the design of this
component the architect considers some relevant scenarios. One
such scenario is related to when the Data Receiver component
crashes (the stimulus). The taxonomy of availability tactics (see
Fig. 2) suggests that the architect should make three decisions
with respect to how the system will respond to address this fault:
(1) how to detect it, (2) how to prevent to it, or (3) how to recover
from it.

Each category of the availability tactics taxonomy describes
a set of tactics (complete detail of availability tactics can be
consulted in Bass et al., 2003 and Bass et al., 2013). Each of
these tactics is a design option for the architect. The architect can
use these to choose among and evaluate design alternatives to
decide how to address the stimulus affecting the Data Receiver

2



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Table 1
General scenario description.
Item Description Example

Source of
stimulus

This is some entity (a human, a computer system, or any other actuator) that
generated the stimulus.

Internal AAL system software.

Stimulus The stimulus is a condition that needs to be considered when it arrives at a system. Data Receiver component crashes.

Environment The stimulus occurs within certain conditions. For example, the system may be in a
normal state, or in an overload condition, or in startup, or may be offline when the
stimulus occurs.

Runtime and high request
overhead.

Artifact Some artifacts are stimulated. This may be the whole system or some pieces of it. Data Receiver component and
internal processes.

Response The response is the activity undertaken after the arrival of the stimulus. Component fully operational with
no data loss.

Response
measure

When the response occurs, it must be measurable so that the requirement can be
tested.

Within 60 s.

Fig. 1. General scenario for availability described in Bass et al. (2013).

Fig. 2. Availability tactics.
Source: Taken from Bass
et al. (2013).

component. For this example, the architect decides on tactics
to detect and recover from failures. Consequently, Table 1, in
the ‘‘Example’’ column, describes the specific scenario for this
illustrative example.

This scenario could be achieved by a number of tactics-based
design choices. First, the fault (crash) needs to be detected. This
detection could be achieved by having the Data Receiver com-
ponent issue periodic heartbeats and monitoring this component.
Additional design choices might be made to recover from a crash,
such as using a spare (to replace the failed component) and scaling
restart (to reintroduce a previously failed component back into
service). Thus, the set of availability tactics provides a kind of
vocabulary and a checklist for design and analysis of the scenario
described in Table 1.

3. Systematic study process

This section describes the process conducted in this SMS
(see Fig. 3). Inspired by the systematic literature mapping pro-
cess proposed by Petersen et al. (2008), our process mainly
includes activities that focus on (i) search and selection of studies,
(ii) data extraction and (iii) synthesis and classification of studies.
Additionally, we include a snowballing process (Wohlin, 2014) to
identify further studies.

3.1. Research objective

The study objective is to identify, analyze, evaluate, and in-
terpret the body of knowledge on architectural tactics. We fo-
cused on conducting a comprehensive review of academic studies

3



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Fig. 3. Design and execution summary of the systematic mapping study.

to characterize the contributions of tactics in the discipline of
software architecture.

3.2. Research questions

To illustrate the contribution of tactics, the study addresses
five research questions:

Research question 1 (RQ1)

Which quality attributes have been addressed by tactics
research?

Objective: This research question aims to explore the quality
attributes that have been studied by tactics research studies and
describe the role and purpose of tactics in the studies in order to
illustrate their contribution.

Research question 2 (RQ2)

Which techniques have been proposed to identify tactics?

Objective: This research question intends to show and de-
scribe the main techniques primary studies use to identify tac-
tics. Additionally, this research question aims to discuss why the
studies use the identified techniques.

Research question 3 (RQ3)

Which kinds of data sources are used to recognize tactics?

Objective: The purpose of this research question is to identify
and describe the most popular data sources used by studies to
recognize tactics in order to analyze the motivation and rationale
of studies to use the identified data sources.

Research question 4 (RQ4)

What mechanisms are used to describe tactics?

Objective: This research question aims to identify and describe
the mechanisms used by primary studies to describe tactics, as
well as the variables, rationale, or aspects used by researchers for
the description.

Research question 5 (RQ5)

Which taxonomies of tactics have been proposed or
updated?

Objective: Based on the taxonomies of tactics originally de-
scribed in Bass et al. (2003), the purpose of this research is
to detail which taxonomies have been updated or proposed in
research studies, as well as the corresponding motivation for this.

3.3. Study search

We defined the search string using the P.I.C.O. (Population, In-
tervention, Comparison, Outcomes) approach proposed by
Kitchenham and Charters (2007). As we are conducting an SMS,
we focused only on Population and Intervention, as suggested by
Petersen et al. (2008, 2015).

• Population: Studies related to software architecture.
• Intervention: Architectural tactics.

For each strategy, we defined keywords and defined the search
string, which is (‘‘software’’ OR ‘‘architecture’’) AND ‘‘architec-
tural’’ AND ‘‘tactic*’’. Having defined the search string, we
searched for primary studies in electronic databases (see Table 2)
and we focused on the title and keywords of each paper. For
each database consulted, the search string was adapted using the
specific standards of each database. For each study, we reviewed
the title and abstract in order to understand the proposal of each
paper. The review period began in September 2020 and ended in
August 2021. Finally, in this step, we collected 552 papers.

4



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Table 2
Databases consulted.
Name URL

IEEE Xplore https://ieeexplore.ieee.org/Xplore/home.jsp
SpringerLink https://link.springer.com
Scopus https://www.scopus.com
ACM Library https://dl.acm.org
Web of Science http://login.webofknowledge.com
ScienceDirect https://www.sciencedirect.com
Wiley https://onlinelibrary.wiley.com

Once the first set of primary studies was obtained, we stored
the papers using Reference Management Software1 to support the
search for primary studies.

3.4. Study selection

To select the articles, we executed the following filters:

• First filter: We scrutinized for the keywords of the search
string in each article abstract. If the keywords were not
found in the abstract, the article was omitted. In this filter,
we also removed duplicate articles. After applying the first
filter, we obtained 223 papers.

• Second filter: We applied the inclusion and exclusion crite-
ria. Any irrelevant articles were omitted at this stage. We
defined the following inclusion and exclusion criteria:

– Inclusion criteria

∗ The study should focus on tactics in software
architecture research.

∗ The study should be subject to peer review.
∗ The study must be written in English.

– Exclusion criteria

∗ Secondary studies
∗ Studies that used ‘‘tactics’’ as technological inno-

vation strategies, rules, algorithms and marketing
strategy.

∗ Grey literature.
∗ Short studies (< 4 pages).
∗ Studies in poster format, tutorials, editorials, etc.

One author executed the inclusion and exclusion criteria.
Subsequently, two authors reviewed the final set of primary
studies to mitigate any potential bias, and hence a threat to
validity. After applying the second filter, we obtained 109
papers.

• Third filter: From the remaining set of articles we read the
abstract again, the introduction and conclusion. In this step,
we omitted those articles whose abstract does not appropri-
ately represent what was described in the introduction and
conclusion.

After applying all the filters, we obtained 79 papers.

3.5. Snowballing process

To explore more primary studies, we executed a snowballing
method (Wohlin, 2014). This method is a non-probabilistic (non-
random) sampling used when the information in the samples
(primary studies) is difficult to find. The main characteristic of

1 For this SMS, we used Mendeley (https://www.mendeley.com).

snowballing is the use of initial primary studies to generate addi-
tional studies. For this SMS, we used this method in order to in-
crease the search scope for primary studies. We performed back-
ward and forward snowballing procedures (i.e. references and
citations), using Google Scholar.2 This step yield twelve additional
papers to the study.

3.6. Data extraction

To extract the primary studies data, we created a template
to organize the information (see Table 3). One author conducted
the data extraction, and a second author verified the extracted
information.

3.7. Data analysis and classification

The information extracted from the primary studies was
grouped, extracted and tabulated in the template described in
Table 3. Items I1 through I8 correspond to the demographic data
from the primary studies. Item I7 categorizes the studies based
on the research type. For this classification, we used the proposal
of Wieringa et al. (2006), which classifies studies based on the
following categories:

• Evaluation research: This type of study deals with inves-
tigating a practical problem or the implementation of a
technique in practice.

• Proposal of solution: These studies propose a solution or
technique and argue about its relevance, without exhaustive
validation.

• Validation research: These studies investigate the properties
of a proposed solution that has not yet been implemented
in practice.

• Philosophical papers: This type of study outlines a new way
of looking at things, a new conceptual framework, etc.

• Opinion papers: These studies emphasize the authors’ opin-
ion about what is right or wrong about something, how
something should be done, etc.

• Personal experience papers: These studies emphasize the
what rather than the why; may relate to one or more
projects, but part of the author’s personal experience.

According to Petersen et al. (2008), the classification proposed
by Wieringa et al. describes the research facet of primary studies,
reflecting the research approach used in the papers. Furthermore,
this classification is easy to interpret and use without evaluating
each paper in particular.

Regarding I8, we followed Kuhrmann et al. (2016) (inspired
by Shaw’s classification of research results Shaw, 2003) to classify
the contributions of primary studies as follow:

• Model: Representation of a reality observed by concepts
related to tactics.

• Theory: Construct of cause–effect relationships.
• Framework: Framework or method related to tactics.
• Guidelines: List of suggestions regarding the use of tactics.
• Lessons learned: Set of outputs from results obtained in

empirical studies related to tactics.
• Advice: Recommendations about the use or experiences of

tactics
• Tool: A tool that uses tactics for different purposes

2 https://scholar.google.com

5



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Table 3
Data extraction template.
Item Data item Description RQ

I1 ID Unique study identifier.

D
em

og
ra
ph

ic
s

I2 Authors Name of the authors.
I3 Title Study title.
I4 Venue Name of the journal, conference, workshop, symposium or book where the primary

study was published.
I5 Type venue Categorization of the venue: journal, conference, workshop, symposium or book

chapter.
I6 Year Publication year.
I7 Research type Classification of studies by research type.
I8 Study contribution Classification of studies by contribution type.

I9 Quality attributes Description of the quality attributes addressed by the primary studies. RQ1

I10 Technique/method Detail of the techniques and methods used to identify architectural tactics. RQ2

I11 Data source Description of the data source used by the primary studies to recognize tactics. RQ3

I12 Criteria Identification of criteria to characterize tactics. RQ4

I13 Taxonomy Identification of new or updated tactics taxonomies. RQ5

For items I9 through I12, we classified the primary study
data by identifying the primary studies’ research themes. These
themes were identified through the guidelines proposed by Braun
and Clarke (2006) to conduct thematic analysis in documents.
Thematic analysis corresponds to a method of searching for
repeated patterns of meanings over a data set (e.g., text). It is
a method adaptable to the context and allows for collaborative
discussion to identify themes. A theme captures something impor-
tant about the data concerning the research topic (in our study,
tactics). The steps executed to identify themes are as follows:

• Search of themes: This step aims to identify the main features
that allow answering the research questions. The features
are characterized in concrete sentences.

• Theme review: Two authors and one contributor review
the identified topics. This review is focused on verifying
whether the theme effectively characterizes an answer to
a research question. More precisely, this step checks that
the identified topic is unambiguous and precise, as far as
possible.

• Define and name the themes: Once the themes are reviewed,
this step names and defines the themes.

The theme identification method was used to tabulate I10,
I11, and I12. Regarding I13, the identification of new or updated
taxonomies is performed through the analysis of each selected
study.

4. Results

This section describes the results of the SMS, detailing first the
primary studies’ demographics and then answering each research
in each subsection.

4.1. Demographics

The study identified 91 primary studies, published in several
venues and years (see Table 11, Table 12, Table 13, Table 14, and
Table 15 in Appendix A). Three-fifths (57.1%) of primary studies
appeared in conference proceedings (see Fig. 4 and Table 4), with
2015 having the highest number (see Fig. 5). One-fourth (27.5%)
of primary studies have been published in journals, beginning in
2009 and remaining constant until 2021, minus 2011; the Journal
of Software and Systems (JSS) leads with most 7 publications.
The remainder of primary studies were published in workshops
(6.6%), symposiums (7.7%), and book chapters (1.1%).

Table 4
Top 5 conferences.
Conference Acronym Publications

International Conference on
Software Architecture

ICSA 6

European Conference on
Software Architecture

ECSA 6

International Conference Series
on the Quality of Software
Architectures

QoSA 5

International Conference on
Software Engineering and
Knowledge Engineering

SEKE 4

International Conference on
Software Engineering

ICSE 3

Fig. 4. Distribution of publication type.

From a historical point of view, we have covered a range of
16 years (we have excluded the years 2006 and 2007 as we did
not find primary studies in those years) based on the years of
publication (see Fig. 5). Although the fundamentals of tactics were
set in SEI technical reports between 2000 and 2002, the first
external publication that introduced tactics dates to 2003, in the
International Software Requirements to Architectures Workshop
(STRAW). Since then, publications have remained relatively con-
stant over the years, excepting 2006 and 2007. The years 2012,
2014, 2015 and 2019 have had the most significant numbers
of publications. Overall, these publication trends demonstrate
consistent interest in tactics research.

The first primary studies were published in workshops and
conferences, but in 2009 started to appear in journals. This inter-
est in publishing papers in journals has remained constant since
then, with at least one publication per year on the topic.

Fig. 6 shows the studies’ distribution of research type:

6



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Fig. 5. Number of papers per year and publication type.

• Almost half (47.3%) are solution proposals, which describe
how to use tactics to address challenges in architectural
design and decision making.

• Two-fifths (39.6%) are evaluation research, which focuses
primarily on evaluating tactics-based techniques or methods
in various research contexts.

• The reminder are philosophical papers (new proposals to
structure and categorize tactics, and mainly in security) or
experience papers (which probe the contribution of tactics for
designing software architectures).

Fig. 6. Distribution of research type.

Fig. 7 shows the studies’ contribution type. Almost half (48.4%4)
are frameworks, which include tactics in the set of techniques they
use to address some specific engineering problem (for topics in-
cluding secure architectures, traceability, satisfying requirements,
and selecting software components). Two minor but important
subgroups are models (16.5%), which allow to represent tactics
knowledge by either refining previously described tactics tax-
onomies or by proposing new taxonomies in other disciplines
(including cyber-foraging, safety, and data-intensive systems);
and guidelines (15.4%), which describe key findings obtained in
empirical studies. The remaining studies describe lessons learned
(7.7%) of actual use of tactics to solve design problems; formalize
tactics theories (6.6%) through various methods (such as Z spec-
ifications); contribute tools to identify tactics in source code; or
give advice on the use of tactics to design software architectures.

Fig. 7. Distribution of contribution type.

Fig. 8 shows the crossing of research type versus contribution
type. As seen above, almost half of studies are solution propos-
als; within this, the largest combination of the whole dataset
(an overwhelming 33 studies of 91) are solution proposals that
contribute frameworks; solution proposals of models are a much
smaller seven studies. The two-fifths of studies doing evaluation
research are distributed in all categories of research type, with
guidelines (13 studies) being the largest subset (and the second
largest kind of study in the whole dataset). The philosophical
papers tend to contribute a theory (5 studies out of 11). And
perhaps naturally, the only experience paper contributes lessons
learned. We did not find studies with research type opinion paper.

Fig. 8. Map of research and contribution types.

Fig. 9 describes the types of validation used in the primary
studies. The most used empirical validation method (almost-
half, 46.2%) are case studies. One-fourth (25.3%) do not specify
their type of validation (if any); indeed, most of them focus on
describing a proposal. One-sixth (16.5%) use experiments; most
focus on validating techniques and algorithms to identify and
characterize tactics in code, and others validate secure software
architecture designs and selection of security design decisions.
One-ninth (11%) do not attempt validation, but use illustrative
examples to explain their ideas in predetermined systems and
environments. Finally, one study uses interviews to validate its
proposals.

Fig. 9. Distribution of empirical strategies used by primary studies.

4.2. RQ1: Quality attributes

Table 5 describes the quality attributes that have been ad-
dressed by the primary studies with their corresponding descrip-
tion and distribution of studies. Some of these quality attributes
(such as security, fault tolerance, availability, performance, adapt-
ability, reliability and modifiability) may be found in the ISO/IEC
25010 quality model. The rest of the quality attributes have been
recognized as quality attributes to evaluate software operational

7



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Table 5
Quality attributes addressed by tactics research.
QA Description # of studies

Adaptability Adaptability controls how easy it is to change the system if requirements have changed
(Tarvainen, 2008).

1

Dependability Property of a system that delivers services at a specified reliability level and the system’s
ability to avoid failures that are serious and numerous (Avizienis et al., 2004).

1

Reliability The degree to which a system, product or component performs specified functions under
specified conditions for a specified period of time (ISO 25000 software and data quality,
2020).

1

Modifiability The degree to which a product or system can be effectively and efficiently modified
without introducing defects or degrading existing product quality (ISO 25000 software
and data quality, 2020).

1

Interoperability The ability of systems to share data and enable the exchange of information and
knowledge between them (Bass et al., 2013).

1

Deployability The time to get code into production after a commit (Bass, 2016). 2

Scalability This quality attribute represents a system’s ability to handle an increasing amount of
work, or its potential to be expanded to accommodate growth (Kazman and Kruchten,
2012a).

3

Performance Performance concerns itself with a software system’s ability to meet timing requirements
(Bass et al., 2013).

4

Safety Attention to safety is required at each step of the software development process,
identifying which functions are critical to the system’s safe functioning and tracing those
functions down into the modules that support them (System Safety Engineering, 0000).

4

Availability Characteristic of architectures that measures the degree to which system resources are
available for use by end-users over a given time period (ISO 25000 software and data
quality, 2020).

4

Fault tolerance This quality attribute is related to a system’s ability to continue to function continuously
in the event of faults (ISO 25000 software and data quality, 2020).

5

Security The degree to which a product or system protects information and data so that
individuals or other systems have the appropriate degree of access to data according to
their types and levels of authorization (ISO 25000 software and data quality, 2020).

18

aspects (safety, deployability, and scalability) or as means to
evaluate service reliability (dependability).

Fig. 10 describes the purpose of using tactics for each qual-
ity attribute identified in the research question. This taxonomy
summarizes how primary studies use tactics to address their
research objectives. Fig. 10 illustrates that, in general, tactics can
be applied to support myriad research approaches. For instance,
with regard to security, fault tolerance and availability, tactics are
essential to define quality attribute requirements. Although the
original definition of tactics aims at satisfying quality attributes,
primary studies have made a significant effort to expand the
boundaries of tactics to other research approaches.

In the following sections, we further discuss how primary
studies use tactics for each quality attribute.

4.2.1. Security
The first contributions on security tactics are focused on the

development of attribute-driven architectures (S6) and the sat-
isfaction of security requirements (S8). These papers introduce
empirical studies describing the importance of using security
tactics to address aspects of architectural design as well as quality
requirements analysis to satisfy stakeholder needs. S10 was the
first to define a methodology to identify security tactics based
on security patterns. This study is one of the first to discuss the
intrinsic relationship between tactics and architecture patterns.
Another study that follows the same research focus as S10 is S55.
This study conducts an experiment regarding the mitigation of
security threats using security tactics and patterns.

Primary studies have also used tactics to design secure soft-
ware (S36, S41, S43), to investigate the contribution of security

tactics in open source software projects (S52), to select applica-
tion frameworks (S73) and to mitigate threats in cyber–physical
systems (S74). These studies argue that security tactics’ contri-
bution is related to the analysis to address security issues in
the design and evaluation of architectures. Furthermore, S63 and
S78 expanded the boundaries of security tactics to understand
and mitigate vulnerabilities in software. These studies combine
vulnerability databases (such as The MITRE Corporation, 2020)
with the security tactics specification to define techniques to
detect, characterize and evaluate vulnerabilities in software.

Another interesting aspect of security is that some researchers
(S12) have proposed a formal notation to describe security tactics.
In this study, the authors attempt to represent security tactics
specifications using formal languages to address security objec-
tives on a more abstract level. More precisely, they focus on
representing tactics related to authentication and authorization.
Additionally, this paper is the first to contribute to the definition
of the theoretical body of knowledge on security in software
architectures.

From a business point of view, S67 proposes a collabora-
tive approach to include stakeholders in security design deci-
sions. In this study, the authors suggest transforming the descrip-
tions of security tactics into cards that stakeholders can use to
reach consensus in the security decision. Inspired by the Planning
Poker technique (Moløkken-Østvold et al., 2008), the authors’
proposal suggests making security design decisions by consider-
ing all stakeholders’ opinions involved in security decisions.

4.2.2. Safety
S2 uses the methods proposed by the SEI to define tactics for

safety. The main focus of this paper is to explore methods for

8



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Fig. 10. Taxonomy of purposes to achieve quality attributes using tactics.

designing safe software architectures. S7 addressed safety tactics
from a control system perspective; this paper investigated the
use of safety tactics to support Commercial Off-The-Shelf (COTS)
acquisition in systems composed of intelligent re-configurable
hardware. S30 proposed a refinement to the safety tactics cata-
logue proposed by S2. This refinement used the IEC 61508 safety
standard as inspiration to propose a new taxonomy. The authors
manually identify architectural methods from the standard and
mapped them to safety tactics. Later, the same authors proposed
safety patterns in S77. These patterns were obtained based on
the STRIDE (Spoofing, Tampering, Repudiation, Information dis-
closure, Denial of service and Elevation of privilege) security
method.

4.2.3. Fault-tolerance
S4 introduced this quality attribute into tactics research by

studying architectural patterns and tactics for fault-tolerance. The
authors analyzed fault-tolerance measures and their relationship
to architectural patterns. For each pattern, the authors examined
several fault-tolerance tactics and investigate how each tactic
would be realized in each pattern. The authors also addressed
which parts of the pattern structure would change to implement
the tactic and how they would change.

S8 addressed fault-tolerance requirements by applying re-
quirement analysis techniques, such as the NFR framework (Chung
et al., 2000) and fault-tolerance tactics. The authors’ goal in
using the NFR framework was to represent tactics through soft-
goals. In this way, trade-offs that may arise when assessing
fault-tolerance concerns can be identified at an early stage. S11
addressed the impact of fault-tolerance tactics on architectural
patterns. The authors study the usefulness of fault-tolerance
tactics in using architectural patterns as a design mechanism. S42
proposed to model fault-tolerance tactics using aspect-oriented
modeling. The purpose of using aspect-oriented modeling is to
represent cross-cutting fault-tolerance concerns as reusable as-
pects with dependent attributes. In this way, the authors aimed
to integrate dependability analysis in the early stages of software
development.

4.2.4. Availability
S5 and S6 discussed how to approach NFRs in software archi-

tecture by representing availability tactics as feature models. In
the case studies addressed by these primary studies, the authors

modeled availability tactics using the Role-Based Metamodel-
ing language (RBML). RBML defines the solution domain of a
role-based design pattern at the meta-model level (Kim, 2007).
Furthermore, RBML supports the development of precise specifi-
cations that can be used to develop pattern tools. Along the same
lines, S35 also used feature models for availability tactics in a
study related to a cloud platform design. To expand the scope of
availability tactics, S76 identified five availability tactics from an
analysis of application framework documentation in the context
of microservices. These availability tactics were: (i) providing
fallbacks, (ii) preventing single dependencies, (iii) asynchronous
messaging, (iv) set timeouts, and (v) self-preservation.

4.2.5. Performance
Like the studies addressing availability tactics, S5, S6 and S35

address the representation of performance tactics through feature
models. This representation is claimed to aid in the design and
analysis of software architectures. S15 uses performance tactics
as a technique to way to search for design solutions. In this
study, the authors propose PerOpteryx, an approach to improve
software architecture modeling using meta-heuristics guided by
tactics. The research problem addressed by the authors of this
study is that most evaluation tools are only able to determine spe-
cific values of quality attributes for a given architectural model.
Therefore, any improvement of the architectural model becomes
a manual exercise for the architect. Due to the ample design
space of non-trivial systems and the many degrees of freedom,
improving the architecture is a tedious task. This implies that an
isolated improvement of a single quality attribute may result in
the degradation of other quality attributes, which is difficult for
software architects to determine and quantify manually. There-
fore, the use of tactics (in this case, performance tactics) helps the
software architect contextualize the design space of architecture
to reduce biases and errors in architecture improvement.

4.2.6. Scalability
S19 introduced the first set of tactics for scalability. In this

study, the authors discussed scalability theory to propose a tax-
onomy of scalability tactics. S72 discussed the role of scalability
in the context of microservice architectures. In this study, the au-
thors suggested five scalability tactics for designing microservices-
based systems, which are: (i) data store separation, (ii) build
separation, (iii) container deployment, (iv) network location, and

9



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

(v) balancing scale. S79 addresses the role of scalability in data-
intensive systems. The authors reviewed the theory of scalability
to propose a taxonomy of scalability tactics for data-intensive
systems.

4.2.7. Adaptability
S46 addresses the contribution of tactics in the context of mo-

bile development. This primary study defines a general scenario
for adaptability and then proposes a set of adaptability tactics.
The general scenario for adaptability is as follows:

• Source: Changes in the resource environment.
• Stimuli: Resource disappear; resource appear; resource

changes quality of service.
• Artifact: System.
• Environment: Few resources; low quality of resources; plenty

of resources; high quality of resources.
• Response: Processes stimuli; change resource dependencies,

change level of service.
• Response Measure: Time with a degraded service level; quan-

tification of degraded service level (throughput, latency, ac-
curacy, etc.); time interval between degraded service level;
amount of spatial areas with degraded service levels

Additionally, the authors validated the proposed tactics for
adaptability in a case study with master’s students. The adaptabil-
ity tactics are as follows: (i) resource selection, (ii) resource pre-
diction, (iii) increase resources, (iv) mask variability, (v) resource
fusion, and (vi) domain modeling.

4.2.8. Dependability
S14 describes a study that uses tactics to probe the rela-

tionship between dependability and other quality attributes in
embedded systems. The authors propose a set of tactics that
address dependability concerns. The authors argue that the use
of these tactics enables the investigation of the relationships
between dependability and other quality attributes of embedded
systems.

4.2.9. Deployability
S32 discusses the relationship between software architecture

and agile methodologies. This study proposes three tactics for
deployability to facilitate the cohesion between tools and deploy-
ment environments. These deployability tactics are as follows: (i)
Parameterization, (ii) Self-monitoring, and (iii) Self-initiated ver-
sion update. S39 explores a software architecture’s contribution
to achieving continuous delivery and deployment objectives.

4.2.10. Reliability
S33 gathers a group of tactics (such as voting, heartbeat, and

state resynchronization) and defines them as reliability tactics. It
then represents them through sequence diagrams to provide test
cases. These test cases are oriented to test reliability and safety
concerns.

4.2.11. Modifiability
S69 uses modifiability tactics to study the evolution of quali-

ties in service-oriented systems. In this study, the authors clas-
sified 15 modifiability tactics into three categories, which are
as follows: principles for both SOA and microservices, design
patterns for SOA and microservices. The results obtained describe
that SOA and microservices have several beneficial properties for
modifiability. This implies that there is a wide variety of patterns
for the concrete realizations of the tactics identified in the study.

Table 6
Techniques to identify tactics.
Technique Description # of studies

Multifacetic This definition concentrates on
techniques described by the primary
studies that do not resemble the
other techniques identified, for
example, analysis of architecture and
design patterns, surveys, consensus
analysis, etc.

3

Text analysis This technique uses text processing
techniques to identify, analyze and
report tactics within empirically
collected data.

4

Manual
mapping

This technique’s primary mechanism
is to manually analyze project
documentation.

10

Code analysis This technique consists of the
(systematic or semi-systematic )
exploration of source code to extract
information about software design in
order to identify tactics.

10

Not described There is insufficient information
provided by the primary study
describing the method used to
identify tactics.

65

4.2.12. Interoperability
S88 executed an online survey to investigate how architectural

strategies to promote interoperability of software-intensive sys-
tems have been used in practice. The survey results reveal that
tactics are the least used architecture strategies by practitioners.
This is because practitioners do not have enough information to
identify the impact of using tactics.

Key findings of RQ1

• The quality attribute that has yielded the most
research is security.

• For primary studies, tactics are not only design
decisions to achieve a quality attribute; they are
also used to address other software architecture
topics such as requirements description, application
framework selection, proposing/refining patterns,
among others.

• In terms of quality attributes, tactics have been used
mainly to design architectures, support patterns and
represent requirements.

4.3. RQ2: Identification of tactics

Table 6 shows that 65 of the primary studies (71% of the total)
do not explicitly describe what techniques or methods were used
to identify tactics. In these papers, the authors describe tactics,
but there is inadequate clarity about the means used to identify
or characterize the tactics.

In the following sections, we detail the proposals of the pri-
mary studies to identify tactics.

4.3.1. Multifacetic
In S20, the authors propose a more rigorous and replicable

method for creating and reviewing tactics; they identify three
approaches to identifying tactics. The first is to derive new tac-
tics from existing ones. The second is to decompose an existing
architectural pattern into its constituent tactics. And the third is

10



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

to extract tactics that have been misidentified as patterns. The
authors use a variant of the Wideband Delphi approach to identify
and review tactics. The approach consists of the following steps:

1. Coordinator presents each expert with a specification and
an estimation form.

2. Coordinator calls for a group meeting in which the experts
discuss estimation issues with the coordinator and each
other.

3. Experts fill out forms anonymously.
4. Coordinator prepares and distributes a summary of the

estimates.
5. Coordinator calls for a group meeting, specifically focusing

on having the experts discuss points where their estimates
vary widely.

6. Experts fill out forms, again anonymously, and steps 4. to
6. are iterated for as many rounds as appropriate.

S10 points out that the number of tactics discovered thus far
is insufficient to cover all the important aspects of architectural
decision-making. In turn, the authors mention that tactics could
be created from scratch, but it would be more efficient and
trustworthy if tactics could be extracted from proven sources.

One possible source is any pattern that consist of tactics.
Therefore, the authors propose to examine architectural patterns
to verify if they satisfy these conditions for identifying tactics:
(i) atomicity, (ii) force limitation, (iii) problem-specificity, (iv)
completeness, and (v) trade-offs between forces.

S2 is one of the pioneers in using surveys to identify tactics.
The authors surveyed studies on software safety design used in
research and practice. The selection of studies was restricted by
considering their appropriateness for architectural design. How-
ever, one of the obstacles in obtaining tactics from these sources
is the complicated relationship between safety techniques and
tactics. For example, one safety technique can implement mul-
tiple tactics affecting multiple quality attributes; and a safety
technique may group mechanisms that are unrelated to quality
attributes. Therefore, the authors mention that using surveys
in domains not directly related to software architecture design
requires more exhaustive tactic elicitation.

4.3.2. Text analysis
Text classification offers another way of identifying tactics.

S83, for example, proposes the use of language models such as
Bidirectional Encoder Representations from Transformers (BERT)
(Devlin et al., 2018) to detect tactics in source code through
multi-class classifications. BERT is based on the assumption that
programmers tend to program similar functions similarly. S87,
on the other hand, uses coding question and answer repositories
(such as Stack Overflow) to apply text analysis and classification
techniques (such as a semi-automatic dictionary-based mining
approach) to extract tactics-related posts.

Thematic analysis supports the identification, organization,
and analysis of patterns or themes to infer results that aid in
the understanding and interpretation of the phenomenon un-
der study (Braun and Clarke, 2006). S85 and S91 uses thematic
analysis to identify tactics. The authors select this technique
because architectural information can be highly dependent on the
project’s specific characteristics.

4.3.3. Manual mapping
Most primary studies identify tactics through rigorous analysis

of different sources of information. Authors who use this tech-
nique to identify tactics generally rely on consensus to identify
and evaluate tactics. For example, S19 explored research on scal-
ability to identify tactics and architectural patterns. The authors
review various sources related to scalability studies to identify

techniques that can be mapped to tactics. S30 reviewed safety
standards for detecting and mapping tactics. The authors used
the IEC 61508 standard to identify tactics. S48 investigates the
architectural security tactics proposed in Bass et al. (2013) and
compares them with information security theory to refine the set
of security tactics.

Studies such as S38 and S45 explore systemic properties, such
as Energy Efficiency and Cyber-Foraging, to define quality at-
tribute scenarios and identify tactics. S86 conducts a systematic
study based on academic studies in the Internet of Things (IoT)
discipline. From the collected documentation, the authors make
a significant effort to identify tactics for IoT-related quality at-
tributes related to security, scalability and performance. Studies
propose to expand the boundaries of tactics foundations from
software to systems to explore other properties that characterize
systems.

Some primary studies also use the experience gained in
real-world projects to identify tactics. In S39, the authors use
interviews and project documentation to identify deployability
objectives, design decisions and deployability tactics. Also, in
S50, the authors use experience from projects related to Big
Data as a Service (BDaaS) to extract data and map it to DevOps
tactics. In this same line, S72 and S76 combine pattern language
descriptions for scalability and availability in microservices with
open source project documentation to identify tactics.

4.3.4. Code analysis
A project’s source code provides insights that can be used

in different ways to identify tactics. Primary studies using this
option have explored various strategies to discover, character-
ize and/or recover tactics, which are: (i) use of topics models,
(ii) exhaustive code analysis, (iii) development of custom tools,
(iv) predictive models and (v) machine learning techniques. In the
following sections, we discuss each of these strategies.

Topic models. Topic modeling has gained prominence over the
past decade as a technique to analyze and summarize large cor-
pus of textual data. S62 proposes a multifaceted approach to
use latent topics to predict the use of tactics in code. This ap-
proach involves two phases: Training & Experimentation (Phase
I) and Application (Phase II). In Phase I, the approach reviews
open-source repositories to create a code crawler to classify and
analyze topics. Phase II uses all the information obtained from
Phase I to create predictive models and identify tactics in source
code.

Exhaustive code analysis. Comprehensive code analysis is another
technique for identifying tactics. S52 addresses the situation
where an architect claims the use of a secure design by employing
some tactic, but the source code does not support the claim. To do
this, the authors explore an architect’s intention to use security
tactics. The authors then attempt to retrieve evidence of efforts
to implement the design in the source code through the use of
analysis tools to identify keywords that characterize tactics in
source code.

Development of custom tools. S31 presents Archie, an Eclipse
plug-in to maintain architectural qualities in design and code
despite long-term maintenance and evolution activities. Archie
detects tactics in a project’s source code, builds traceability links
between tactics and code, and then uses these links to monitor
the environment for significant architectural changes and to keep
developers informed of underlying design decisions and their
associated justifications.

11



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Predictive models. In S22 the authors describe a process for min-
ing tactics and design patterns to build decision trees and tactics
reference models. The approach incorporates a catalog of user
customizable pattern definitions, supports pattern variations and
alternatives, and applies multiple search technologies in order
to execute a custom matching process. Additionally, this process
uses the tactic detection algorithm (Cleland-Huang et al., 2006;
Mirakhorli et al., 2012b) to identify tactics in the source code.
On the other hand, S26 proposes predictive models that cap-
ture the relationships between thematic domains and the use
of specific tactics. Based on an extensive analysis of over 1000
open-source systems, the authors identify significant correlations
between domain issues and tactics and use that information to
build a predictor to generate recommendations related to tactics.
It is important to mention that their model uses topic modeling
techniques, such as Latent Dirichlet Allocation (LDA) (Blei et al.,
2003).

Machine learning techniques. The use of machine learning tech-
niques provides a novel perspective to identify tactics. These
techniques focus on training a neural network to ‘‘educate’’ the
machine to perform a task requiring intelligence (Alpaydin, 2020).
S24 and S28 introduce the use of Machine Learning to identify
tactics. These studies address traceability approaches, such as
tactic Traceability Pattern (tTP) to build models for recognizing
tactics. S24 and S28 serve as a foundation for the approach
described in S58, where the authors use diverse machine learning
techniques, such as support vector machine, classification by
decision tree, Bayesian Logistic Regressions, AdaBoost, SLIPPER
and Bagging, to classify and train code segments to produce a
set of indicator terms that are considered representative of each
tactic type. S63 uses the same techniques as S58 to identify
vulnerabilities in security tactics code. The authors reported that
30% of the vulnerabilities found in code correspond to security
tactics code. Finally, S66 makes tactic identification operational
through the ArchEngine tool (ARCHitecture search ENGINE). This
tool automates all the approaches described in S24, S28 and S58.

Key findings of RQ2

• The analysis of project documentation is the most
common technique to identify tactics.

• Machine Learning techniques such as Decision Tree,
Support Vector Machine, and AdaBoost emerge as
an alternative to identify and classify tactics in
source code.

• Natural Language Processing techniques such as
Latent Dirichlet Allocation are used to discover
tactic-related topics in source code.

4.4. RQ3: Kinds of data sources

4.4.1. Overview
We identified 7 kinds of data sources in primary studies (see

Table 7). 63 studies (approx. 69% of the total) do not explicitly
describe which kind of sources they used to identify tactics.
This situation occurs because these studies use predefined tactics
(primarily those published in Bass et al., 2013) for other research
purposes. In the following sections, we further discuss the data
sources identified.

4.4.2. Standards
Another source used to recognize tactics is the description of

standards. S30 uses the description of the IEC 61508 standard
as a source. This standard is related to the functional safety

Table 7
Data sources identified in primary studies.
Data sources Description # of studies

Standards This data source is related to the
definition of quality attribute
standards (e.g., ISO 25000).

1

Experts Source of knowledge generated by
experts’ practical and industrial
experience in software development.

1

Patterns Source based on descriptions and
implementations of
design/architectural patterns.

1

Design
decisions

This source is based on the
architectural knowledge created
during the development of software
architectures.

3

Web repository This source is related to web
communities where practitioners
interact through questions and
answers about software architecture
issues.

3

Documentation Sources related to documentation of
projects and technologies.

7

Source code This data source corresponds to the
relationships among classes,
implementation of specific methods,
invocation of packages, and
application frameworks realized in
code.

12

Not described There is insufficient information
provided by the primary study
describing the data source used to
identify tactics.

63

of electrical, electronic and programmable electronic equipment.
It is a publication of the IEC.3 Its main objective is to help
individual industries to develop supplementary standards, specif-
ically designed for industries that employ the original IEC 61508
standard.

4.4.3. Experts
There is no doubt that experience is one of the most important

sources for identifying tactics. The fundamentals of tactics can
be extracted based on interviews with experts. From the data
obtained in these interviews, it was possible to propose the
first taxonomies of tactics (Bachmann et al., 2003a). Using the
same methodology, S20 used experts as a source for recognizing
and comparing tactics. In that study, the authors proposed an
approach for rigorously extracting tactics, accompanied by expert
opinion.

4.4.4. Patterns
According to Bass et al. (2013), patterns are a set of design

decisions that solve a recurring problem. Therefore, it seems nat-
ural that the pattern specifications contain tactics and hence can
be used to identify tactics. S10 used security patterns to extract
security tactics. The procedure described by the authors is based
on security pattern analysis to identify potential architectural
tactics.

4.4.5. Design decisions
S39 used design decisions as a source to recognize tactics. The

authors identified design decisions through interviews conducted
with project teams. From the design decisions, the authors could
then identify tactics. For example, consider the following design

3 https://www.61508.org/knowledge/what-is-iec-61508.php

12



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

decision: Project A built an integrated test framework to allow the
team to simulate the performance of the system under varying con-
ditions. They used the framework to batch transactions and monitor
the performance to see if it falls below an established threshold. The
integrated test framework supports testing of distributed message
communication (e.g., message queues and backend processes). This
integrated test framework is seen as an instance or a variation of
the Testability tactic: Specialized access routines/interfaces.

Both S2 and S38 also use design decision principles as a source
for recognizing tactics in Safety and Energy Efficiency.

4.4.6. Web repository
Web coding repositories communities (such as Stack Overflow

and Github) are essential sources for extracting tactics. The inter-
action between practitioners regarding issues of code, projects,
application frameworks, and technologies allows for a broad col-
lection of knowledge. Since part of this knowledge can be repre-
sented by tactics, S85, S87 and S91 use Stack Overflow as a source
of information to explore posts about tactics.

4.4.7. Documentation
S72 and S76 used application framework documentation to

extract tactics. Application frameworks are reusable software el-
ements that provide generic functionality focused on solving
recurrent issues (Cervantes et al., 2019). Since frameworks are
often based on architectural patterns and tactics, the authors
of these studies used open-source framework documentation to
recognize tactics.

S19, S45, S48 and S50 use other types of documentation to
recognize tactics. S45 and S19 use research literature to recog-
nize tactics. S48 uses architectural security tactics descriptions
and information security theory to update architectural security
tactics. Finally, S50 uses project documentation as a source for
recognizing and characterizing tactics.

Another source for recognizing tactics are agile software de-
velopment structures. In S32, the authors make a complete study
on the importance of architecture in agile projects. The authors
study alignments among agile software development structures
to derive tactics. The structures are as follows:

• The Architecture of the system under design, development,
or refinement, what we have called the traditional system
or software architecture.

• The Structure of the organization: teams, partners, subcon-
tractors, and others.

• The Production Infrastructure used to develop and deploy the
system, the last activity being especially important in con-
texts where the development and operations are combined
and the system is deployed continuously

4.4.8. Source code
Source code is the most common data source for identifying

tactics. Twelve primary studies (S22, S24, S26, S28, S31, S52, S58,
S62, S63, S66, S83 and S90) use project source files, logs, con-
figuration files, packages, instances, and other artifacts to apply
different analytical techniques to recognize tactics.

Key findings of RQ3

• In general, studies do not bother to detail which
data sources they use to recognize tactics.

• Project documentation and source code are the
popular data sources for recognizing tactics.

• Recent studies are positioning repositories and web
communities (such as Github and Stack Overflow)
as favorites for exploring tactics.

4.5. RQ4: Mechanisms to describe tactics

4.5.1. Overview
We recognized 4 mechanisms to describe tactics (see Table 8).

Almost half of studies do not identify a mechanism to describe
tactics; indeed, they mention and use tactics for other purposes.
We discuss the mechanisms in detail in the following sections.

Table 8
Mechanism to describe tactics identified in primary studies.
Mechanism Description # of studies

Formal
language

Languages with formal syntaxis and
semantics.

1

Description Unstructured narrative. 9

Specific
template

Usually some fields from the general
scenarios described in Bass et al. (2013),
complemented with some additional
fields.

12

Model Several kinds of model representation
(such as UML, feature models, and
others).

15

Not described There is insufficient information
provided by the primary study
describing the data source used to
describe tactics.

54

4.5.2. Formal language
S12 used a Z specification (Spivey and Abrial, 1992) to char-

acterize tactics. This notation’s objective is to formally describing
the main characteristics of computer systems. The notation uses
mathematical data types to model the data of a system.

4.5.3. Description
9 primary studies (S7, S19, S45, S46, S48, S50, S72, S75, and

S79) characterized tactics through narrative descriptions. Some
studies focus their descriptions on design decision properties;
for example, S79 describes scalability tactics based on scalability
properties such as scale-out, scale-in, and resource virtualization.

4.5.4. Specific template
12 primary studies (S1, S2, S23, S25, S30, S38, S39, S59, S76,

S85, S86, and S91) are inspired by the descriptions of general
scenarios (Bass et al., 2013) (see Table 1, already described in
Section 2) to propose their own templates to characterize ar-
chitecture. Unlike S76, which uses a template inspired by the
general scenario description to define, characterize and describe
architectural availability tactics, the rest of the studies propose
different types of templates that are extended to characterize
tactics. The main objective of these templates is not to describe
tactics explicitly, but rather to describe scenarios to contextualize
another type of architectural analysis.

4.5.5. Model
Another way of representing tactics is through models. These

models have several objectives, but all aim to represent architec-
tural design decisions.

S5, S6, S35, S40, S43 and S51 characterize tactics through
feature models. These types of models are used to define software
product lines and system families. Features are used to identify
and organize the commonalities and variabilities within a domain
and model functional and quality properties (White et al., 2014).

S27, S33 and S42 use the UML standard to represent tac-
tics; these studies characterize tactics using Class Diagrams and
Sequence Diagrams.

S24 characterizes tactics through models that allow visualiza-
tion of the traceability between quality concerns, tactics and code.
S31 operationalizes the S24 proposal and represents the quality
characteristics in design and code with a tool called Archie.

13



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Finally, S8, S9, S16 and S37 characterize tactics through con-
ceptual models.

Key findings of RQ4

• A significant group of primary studies prefers ab-
stract representation such as models to describe
tactics.

• The general scenario template for describing quality
attribute requirements can be adapted to describe
tactics.

• There is interest for studies to propose their own
definitions for tactics.

4.6. RQ5: Tactics taxonomies

We have identified 10 taxonomies of tactics that update the
taxonomies initially proposed in Bass et al. (2003) or propose new
taxonomies for the discipline (see Appendix B). The quality at-
tributes addressed by these taxonomies are security, safety, fault-
tolerance, scalability, deployability and modifiability. Regarding
security and modifiability, the primary studies have proposed
modifications to the taxonomies described in Bass et al. (2003)
and Bass et al. (2013). In general, the main reason for presenting
updates is to extend the tactics to other areas of security and
modifiability that the initial taxonomies did not address. On
the other hand, in relation to safety, fault-tolerance, scalability
and deployability, the proposed taxonomies correspond to new
contributions to the discipline.

Regarding security, S20, S25, S44, S48 have proposed different
kinds of refinement of the security tactics taxonomy to comple-
ment or address other security aspects such as intrusion iden-
tification, security information management, and steganography,
among others. Security tactics research has inspired some re-
searchers to propose a new look at the security tactics taxonomy
originally proposed in Bass et al. (2003). These researchers pro-
posed a new security taxonomy because the original taxonomy
was created through informal means; they employed techniques
such as Wideband Delphi to create a more methodological ap-
proach to the identification of tactics. Other researchers argue
that the original taxonomy of security tactics can be supple-
mented by other aspects of security, such as security principles
and policies. Therefore, Fig. 11 describes the proposed security
taxonomies proposed by S20 and S48, respectively.

Regarding safety, the taxonomies proposed by S2, S7, and
S30 coincide in the categories but differ somewhat in the tactics
proposed. The difference lies mainly in which safety objective
they aim at. More precisely, the tactics described in Fig. 13 are
oriented towards the design of safety architectures, represent
aspects of the IEC 61508 standard and describe decisions focused
on process control devices.

Fault tolerance has also sparked interest in proposing tactics.
In this respect, the main motivation of primary studies addressing
fault tolerance is to propose tactics to design an architecture that
ensures better response times to failures. Fault-tolerant architec-
tural design allows the software to be proactively monitored by
preventing critical systems from failing or mitigating a critical
component’s risk. S4 introduced a proposal for fault-tolerance
tactics, a subset of the availability tactics proposed in Bass et al.
(2003) (see Fig. 14).

In order to address design decisions related to the ability
to handle increasing resources and data loads, scalability tactics
taxonomies have been proposed whose main purpose is to pro-
vide tactics for designing systems that satisfy a certain degree of
scalability, both vertically and horizontally. In this regard, both

S19 and S79 proposed taxonomies of scalability tactics, which are
described in Fig. 15.

The deployability tactics taxonomy proposed in S39 aims to
support an architect to evaluate structuring services to be de-
ployed and how to deploy services. Fig. 12 depicts tactics that
help address deployability design concerns.

The study described in S69 reviewed the literature regarding
modifiability and proposed a refined taxonomy of modifiability
tactics (see Fig. 16). These tactics are used to conduct a study
to strengthen the understanding of qualities evolution in service-
and microservices-based systems.

Key findings of RQ5

• Safety leads as the quality attribute with the most
proposed taxonomies.

• Security is the only quality attribute for which
only updates to the original taxonomy have been
proposed.

5. Discussion

This section takes the results obtained in each research ques-
tion and discusses those aspects that we find relevant to the
tactics research community. The papers selected in our study
reveal different perspectives on how researchers use tactics. The
results depicted in Table 9 corroborates this.

5.1. Lack of rigor in characterizing and defining architectural tactics

The original categorizations of tactics largely arose from inter-
views with architects and practitioners. The intention of captur-
ing this knowledge was to create a more systematic methodology
to make design decisions and to evaluate quality requirements.

Based on results obtained in RQ2, RQ3 and RQ4, we realized
that we could not identify a widespread tactics characterization
and definition process. Some papers that proposed techniques
to obtain tactics are based on capturing knowledge from source
code, using several techniques (such as support vector machines,
decision trees, Bayesian logistic regression, AdaBoost, etc.). How-
ever, tactics are not only represented in code; tactics are also
important in decision-making and architectural reasoning. There-
fore, only a part of the tactics characterization process is ad-
dressed by tactics recovery from source code. Indeed, we believe
that tactics and tactics discovery go well beyond source code;
this is only one of the possible dimensions of tactics research.
The ability to make design decisions and trade-offs, and their
impact on quality attributes, are critical dimensions that must be
addressed.

Moreover, there is not enough analysis about the proper way
to characterize and define tactics. The primary studies do not
dispute the nature of tactics; they only use them. But there
is no widely agreed-upon method for defining a tactic. Some
primary studies (like S20, S45, S46, and S76) attempt to propose
a structure based on the original definition of Bass et al. (2003)
to refine or propose new tactics; they describe a general scenario
in order to help understand tactics. The primary studies use the
general scenarios in order to use robust methodological support
to justify the characterization of tactics. In this regard, the gen-
eral scenarios give the possibility to describe specific scenarios
for quality attributes. Given that the structure of the general
scenario (source of stimulus, stimulus, environment, artifact, re-
sponse and response measure) describes significant information
about quality attributes, this information can be used to define

14



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Table 9
Overview of primary studies for each RQ (the number inside each box is the amount of studies).

and characterize tactics. However, despite the potential of general
scenarios, most studies do not specify a methodology for refining
or proposing new tactics.

Research in tactics has the potential to generate a theory:
the characterization and definition of tactics could be formalized
based on analytic results. This does not mean that the other
forms of inquiry identified in this paper cannot generate new
knowledge. The studies that use case studies, examples and ex-
perimental studies can generate significant findings in tactics
research. But there is little critical analysis of, for example, How
useful was the description of a tactic in a given context? What
kinds of results are expected using the definition of a tactic?
How have individual tactics evolved and how has the field of
study evolved? Hence, we think that a methodological process
to extract and characterize tactics in all their dimensions will not
only refine the body of knowledge of tactics but also be able to
discover other types of tactics.

5.2. Source code and application frameworks

Much of the primary research has studied tactics from two
perspectives: source code and application framework. On the

source code side, studies such as S22, S24, S26, S28, S28, S31, S52,
S58, S62, S63 and S64 argue that design decisions and rationale
found in documentation can rarely be traced back to source
code. This implies that documented design decisions provide
only limited support for keeping developers informed about the
underlying decisions during code maintenance. Therefore, these
studies propose using source code analysis techniques to identify
tactics-related code. These techniques range from manual source
code analysis to techniques using machine learning, latent topics
and predictor models. This approach of investigating tactics not
only helps to detect tactics in source code and support traceability
with quality attribute requirements but also supports knowing
which tactics are most used by architects to design software
architectures. In this respect, we believe that an exploratory study
on identification of tactics in source code applied to a significant
set of systems could give insights into which tactics are most used
by architects to address design concerns.

On the other hand, three studies (S73, S80 and S83) have
addressed tactics as a way to evaluate and analyze application
frameworks. S73 uses the specification of security tactics to eval-
uate the functionality of application frameworks based on func-
tional coverage. S80 uses imperfect information to determine

15



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Table 10
Industrial evidence summary.
Study Description

S9 The authors carried out studies in several companies in
different sectors.

S15 The authors used two systems: a business reporting system
(BRS) and an industrial control system (ICS) from ABB.

S16 The authors evaluate the efficacy of our approach based on a
case study of a Lunar Robot.

S18 e-Bay is used in this study.
S57 A complex private social network system based on the

Microsoft Azure cloud is used in this study.
S59 A healthcare system is used in this study to evaluate tactics.
S62 Apache Hive and Hadoop are used in this study.
S63 Chronium, PHP and Thunderbird are used in this study.
S67 An intranet communication system is used in this study.
S70 Industrial Control Systems (developed by 277 vendors) are

used in this study.
S71 In this case study, three systems are used: Tactical Cloudlets

system, GigaSight system, and AgroTempus system.
S74 The OmniSEC system is used in this study.
S78 Chronium, PHP and Thunderbird are used in this study.

the relationship between tactics, patterns and frameworks in
the context of microservice architecture. Imperfect information
represents a more realistic scenario with respect to the decisions
the architect must make in selecting frameworks. Finally, S83
also uses the specification of tactics and patterns to recommend
application frameworks.

According to these studies, tactics can be used for different
purposes that are not only simply to design decisions. Although it
makes sense to use tactics to map design decisions in source code
or recommend application frameworks, we believe that these
approaches should also be complemented with the original defi-
nition of tactics. We think it is interesting to know the architect’s
intention in using these approaches: Translating a design decision
into source code enables the implementation of the architecture.
Still, architects rarely describe what stimulus and response they
want to address when selecting a tactic. Using tactics to select
application frameworks helps the architect evaluate a more re-
stricted set of solutions. We believe that the architect’s reasoning
as to what responses the system should execute in the face of
an external stimulus allows us to contextualize the use of tactics
better to recommend application frameworks.

5.3. Little industrial evidence on the use of architectural tactics

The analysis of the primary studies reveals that there is little
industrial evidence regarding the use of tactics. Table 10 describes
the primary studies that have used industrial systems to validate
their proposals.

One of the advantages that an architectural approach provides
is the early choice of and description of design decisions. Those
early decisions have a major impact on the rest of the project and
are difficult to change as the project evolves. However, evaluating
and managing these decisions based on quality attributes alone
can be difficult. Stal (2012) mentions that this occurs because
quality attributes often affect many parts of a system. For exam-
ple, practitioners cannot limit security or performance attributes
to one part of the system. Such attempts are impossible in most
contexts because the concerns are cross-cutting and often even
invasive, i.e., they require practitioners to make design and code
decisions in existing components.

Kassab et al. (2018) mention there is limited evidence of ar-
chitecture patterns in practice, and their study shows that quality
attribute requirements are not a factor in selecting architecture
patterns: practitioners select them mainly based on functionality
and technological constraints. Although this makes sense in a
world where time and resources are limited, this study shows
that systematic analysis of software architecture design is (still)
not a priority for the industry. Thus there is insufficient evidence
of tactics studies in the industry. We know that quality attributes
are systemic and need global and strategic treatment.

On the other hand, we also know that architecture patterns are
selected through constraints that have weak relation to software
design and quality attributes. Nevertheless, the appropriate way
to address these issues is the systematization of quality attribute
analysis and decisions (Richards and Ford, 2020). For example,
Stal (2012) mentions that scenario-based approaches (e.g., ATAM
and utility trees) are an excellent way to model, document and
express quality attributes in a more specific and systemic way.
This allows for the introduction of more strategic approaches such
as tactics. Indeed, each high priority scenario addressed by an
ATAM may result in the deployment of tactics (or ‘‘strategies’’ as
they are often called in industry).

6. Threats to validity

Several threats to the study validity have been identified and
mitigated. Following Wohlin et al. (2012) and the suggestions
described by Ampatzoglou et al. (2020), we address threats to the
conclusions, internal, external, construct and external validity.

Conclusions validity refers to the relationship between the ex-
tracted and synthesized data and the study findings. To mitigate
potential threats to the conclusion, we used a search string to
automatically find primary studies, which contained the main
concepts addressed by the study. We also replicated the results
obtained with the search string with other researchers from our
research team. In addition, we defined a template to systematize
the data extracted from the primary studies. The three authors
participated in the creation of the template as well as in the data
refinement. Finally, we used guidelines for systematic mapping
studies in order to reduce biases in the review process and in the
extraction of information from the primary studies.

Internal validity is related to the level of control of the study
on the variables that may influence the study itself. To mitigate
internal validity threats, we followed the systematic mapping
studies guidelines proposed by Petersen et al. (2015). For data
analysis, we used descriptive statistics to interpret the data; and
for qualitative data analysis, we used models and representa-
tions from the literature to contextualize the primary studies’
contribution.

External validity is related to the generalizability of the study
findings. To mitigate threats to external validity, we discussed the
systematic mapping results with collaborators, and held working
sessions with colleagues of our research team to discuss the
contribution of each primary study to the research on tactics. To
address the potential threat of lacking a set of primary studies
representative of the research objective, we used inclusion and
exclusion criteria to filter studies; these criteria allowed to iden-
tify more precisely those studies that belonged (or not) to the
study scope.

Construct validity refers to the validity of extraction and tuning
of research question data. To mitigate its threats, we tested the
search string in pilot studies in order to refine and improve it, us-
ing a trusted source (ACM Digital Library) to evaluate the studies
it yield. Once the final search string was accepted, we used it on
several prestigious electronic databases to find primary studies.
Additionally, we used snowballing to cover and review a larger

16



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

number of primary studies. Once all the primary studies were
collected, we reviewed each of them rigorously and critically.
We also defined a thorough mapping process to obtain a set of
primary studies suitable for answering the research questions.

7. Related work

Previous studies have revised the tactics literature with spe-
cific quality attributes or technologies in mind.

Lewis and Lago (2015a) conducted a systematic literature
mapping of tactics for cyber-foraging, arguing that mobile devices
have become the dominant way to interact with the Internet,
businesses, and social networks. The study describes quality at-
tributes that are relevant for cyber-foraging systems, and found
research gaps regarding system-level concerns for operations in
cyber-foraging systems and large-scale evaluations. As a further
result, they codified design decisions and proposed tactics for
cyber-foraging.

Ullah and Babar (2019) conducted a systematic study of tac-
tics for Big Data Cyber-security Analytics (BDCA) systems. They
described critical quality attributes for BDCA systems (namely,
performance, accuracy, and scalability), and found a lack of ar-
chitectural support for some of them. They also remarked the
lack of empirical research about the coding of tactics and quality
trade-offs among tactics.

Li et al. (2020) reported a systematic literature review for mi-
croservice architectures. They identified six key quality attributes
for microservices architecture (namely, scalability, performance,
availability, monitorability, security, and testability), and pro-
posed nineteen tactics to address them. In the same line, Osses
et al. (2018a) also explored tactics and architectural patterns for
microservice architectures, and concluded that there is actual but
scant evidence of tactics in microservice architectures.

Paradis et al. (2021) explored tactics for energy efficiency.
They proposed a new taxonomy for energy efficiency to address
the identified research gaps; discussed evidence from industry
regarding the use of tactics for software energy efficiency; and
argued for the need of experimental studies to validate these
tactics.

While these studies agree on the relevance and importance of
architectural tactics to address quality attributes, they all focus
on specific domains or types of systems. This study has explored
tactics more broadly rather than for specific domains, and has
done so by mapping how the literature has addressed the various
aspects of tactics.

8. Conclusions

This paper has reported the results of a systematic mapping
study of the existing literature on tactics, from their introduction
in 2003 until now. We reviewed and analyzed 91 primary studies
in order to answer 5 research questions. We identified 12 quality
attributes that have been addressed by the primary studies, with
security being the attribute that has attracted the most interest
in the community. Also, we realized that 70% of studies do not
explicitly describe their method to identifying tactics; however,
for those studies that do describe, we have identified 4 methods
that allow for the identification of tactics. In the same regard,
69% of the primary studies do not describe which data sources
they use to recognize tactics; nevertheless, we have identified
7 data sources used to recognize tactics on those studies that
do describe the data source. We also identified 4 mechanisms
for characterizing tactics, with models and specific templates
predominating as the preferred. And we identified 10 taxonomies
that have proposed and/or refined taxonomies of tactics.

The painstaking review, analysis and summarization of tactics
proposals led us to the unexpected, but also unavoidable, conclu-
sion that most tactics proposed in the literature do not conform
to the description of the original definition, which posited them
as design decisions to preserve quality attributes in presence of
stimuli.

The evidence gathered shows several research opportunities:

1. More rigorous methods for identifying and characterizing
tactics are needed, since many primary studies use (im-
plicit) definitions of tactics quite at variance from the initial
definition and spirit.

2. Tactics have become relevant to map architecture decisions
onto source code, and automation opportunities beckon
within reach.

3. Tactics are a key conceptual tool to reduce solution spaces
that architects must evaluate, and should be related to
application frameworks whenever possible; and

4. Industry adoption of tactics will need more empirical stud-
ies that show how tactics benefit architects’ decision mak-
ing.

Ongoing research is exploring barriers to adoption of tactics
by architects in industry, and specifically their perceptions on
whether and how their key design decisions can (and should)
be usefully expressed using tactics. Future research will focus on
proposing a systematic method to define and characterize tactics,
to better discover new ones, describe them adequately, and drive
their use.

CRediT authorship contribution statement

Gastón Márquez: Conceptualization, Writing – original draft,
Writing – review & editing. Hernán Astudillo: Conceptualization,
Writing – review & editing. Rick Kazman: Conceptualization,
Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

This work was supported in part by the Centro Basal CCTVal
(PIA/APOYO AFB180002) from ANID (Chile), and by awards CCF-
1823214 and CCF-1817267 from the National Science Foundation
(USA). We also thanks to the department of Electronics and
Informatics from the Universidad Técnica Federico Santa María.

Appendix A. Primary studies

Table 11, Table 12, Table 13, Table 14, and Table 15 de-
scribe the identifier (ID), authors, title, venue, and citation of the
primary studies.

Appendix B. Taxonomies identified in the SMS

Fig. 11, Fig. 12, Fig. 13, Fig. 14, Fig. 15, and Fig. 16 illustrate the
taxonomies for Security, Deployability, Safety, Fault Tolerance,
Scalability and Modifiability, respectively.

17



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Table 11
Primary studies (part I).
ID Authors Title Venue Cite

S1 F. Bachmann, L. Bass,
and M. Klein

Moving from quality attribute requirements to
architectural decisions

International Software Requirements to
Architectures Workshop

Bachmann et al.
(2003b)

S2 W. Wu and T. Kelly Safety tactics for software architecture design Annual International Computer Software and
Applications Conference

Wu and Kelly
(2004)

S3 H. Reza, D. Jurgens,
J. White, J. Anderson,
and J. Peterson

An architectural design selection tool based on
design tactics scenarios and nonfunctional
requirements

IEEE International Conference on Electro
Information Technology

Reza et al. (2005)

S4 N. B. Harrison and P.
Avgeriou

Incorporating fault tolerance tactics in
software architecture patterns

Joint International Workshop on Software
Engineering for Resilient Systems

Harrison and
Avgeriou (2008)

S5 S. Kim, D. K. Kim, N. Lu,
and S. Y. Park

A tactic-based approach to embodying
non-functional requirements into software
architectures

International IEEE Enterprise Distributed
Object Computing Conference

Kim et al. (2008)

S6 S. Kim, D. K. Kim, L. Lu,
and S. Park

Quality-driven architecture development using
architectural tactics

Journal of Systems and Software Kim et al. (2009)

S7 A. E. Hill and M.
Nicholson

Safety tactics for reconfigurable process
control devices

IET International Conference on Systems Safety Hill and Nicholson
(2009)

S8 T. Marew, J. S. Lee, and
D. H. Bae

Tactics based approach for integrating
non-functional requirements in object-oriented
analysis and design

Journal of Systems and Software Marew et al.
(2009)

S9 N. B. Harrison and P.
Avgeriou

How do architecture patterns and tactics
interact? A model and annotation

Journal of Systems and Software Harrison and
Avgeriou (2010)

S10 J. Ryoo, P. Laplante, and
R. Kazman

A methodology for mining security tactics
from security patterns

Annual Hawaii International Conference on
System Sciences

Ryoo et al. (2010)

S11 N. B. Harrison, P.
Avgeriou, and U. Zdun

On the impact of fault tolerance tactics on
architecture patterns

International Workshop on Software
Engineering for Resilient Systems

Harrison et al.
(2010)

S12 A. Wyeth and C. Zhang Formal specification of Software Architecture
Security Tactics

International Conference on Software
Engineering and Knowledge Engineering

Wyeth and Zhang
(2010)

S13 S. Kim, D. K. Kim, and S.
Park

Tool support for quality-driven development of
software architectures

IEEE/ACM International Conference on
Automated Software Engineering

Kim et al. (2010)

S14 S. H. Al-Daajeh, R. E.
Al-Qutaish, and F.
Al-Qirem

Engineering dependability to embedded
systems software via tactics

International Journal of Software Engineering
and its Applications

Al-Daajeh et al.
(2011)

S15 A. Koziolek, H. Koziolek,
and R. Reussner

PerOpteryx: Automated Application of Tactics
in Multi-Objective Software Architecture
Optimization

ACM SIGSOFT conference Koziolek et al.
(2011)

S16 M. Mirakhorli and J.
Cleland-Huang

Using tactic traceability information models to
reduce the risk of architectural degradation
during system maintenance

IEEE International Conference on Software
Maintenance

Mirakhorli and
Cleland-Huang
(2011)

S17 A. Sanchez, A. Aguiar, L.
S. Barbosa, and D. Riesco

Analysing tactics in architectural patterns IEEE Software Engineering Workshop Sanchez et al.
(2012)

S18 J. M. Cañete-Valdeón Annotating problem diagrams with
architectural tactics for reasoning on quality
requirements

Information Processing Letters Cañete-Valdeón
(2012)

S19 R. Kazman and P.
Kruchten

Design approaches for taming complexity IEEE International Systems Conference Kazman and
Kruchten (2012b)

S20 J. Ryoo, P. Laplante, and
R. Kazman

Revising a security tactics hierarchy through
decomposition reclassification and derivation

IEEE International Conference on Software
Security and Reliability Companion

Ryoo et al. (2012)

S21 E. B. Fernández and H.
Astudillo

Should we use tactics or patterns to build
secure systems?

International Symposium on Software
Architecture and Patterns

Fernandez and
Astudillo (2012)

S22 M. Mirakhorli, P. Mäder,
and J. Cleland-Huang

Variability points and design pattern usage in
architectural tactics

ACM SIGSOFT International Symposium on the
Foundations of Software Engineering

Mirakhorli et al.
(2012a)

S23 S. H. Al-daajeh, R. E.
Al-qutaish, and F.
Al-qirem

A Tactic-Based Framework to Evaluate the
Relationships between the Software Product
Quality Attributes

International Journal of Software Engineering Al-Daajeh et al.
(2012)

S24 M. Mirakhorli, Y. Shin, J.
Cleland-Huang, and M.
Cinar

A tactic-centric approach for automating
traceability of quality concerns

International Conference on Software
Engineering

Mirakhorli et al.
(2012c)

S25 C. Preschern Catalog of Security Tactics linked to Common
Criteria Requirements

Conference on Pattern Languages of Programs Preschern (2012)

S26 M. Mirakhorli, J.
Carvalho, C. H. Jane, and
P. Mäder

A domain-centric approach for recommending
architectural tactics to satisfy quality concerns

International Workshop on the Twin Peaks of
Requirements and Architecture

Mirakhorli et al.
(2013)

S27 X. Qiu and L. Zhang Providing support for specifying redundancy
tactics using aspect-oriented modeling

International Symposium on the Physical and
Failure Analysis of Integrated Circuits

Qiu and Zhang
(2013)

18



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Table 12
Primary studies (part II).
ID Authors Title Venue Cite

S28 M. Mirakhorli Preventing erosion of architectural tactics
through their strategic implementation,
preservation and visualization

IEEE/ACM International
Conference on Automated
Software Engineering

Mirakhorli (2013)

S29 M. Kassab and G.
El-Boussaidi

Towards quantifying quality tactics and
architectural patterns interactions

International Conference on
Software Engineering and
Knowledge Engineering

Kassab and
El-Boussaidi (2013)

S30 C. Preschern, N.
Kajtazovic, and C.
Kreiner

Catalog of Safety Tactics in the light of the IEC
61508 Safety Lifecycle

VikingPLoP Conference Preschern et al.
(2013)

S31 M. Mirakhorli, A.
Fakhry, A. Grechko,
M. Wieloch, and J.
Cleland-Huang

Archie: A tool for detecting monitoring and
preserving architecturally significant code

ACM SIGSOFT International
Symposium on the Foundations
of Software Engineering

Mirakhorli et al.
(2014)

S32 R. L. Nord, I. Ozkaya,
and P. Kruchten

Agile in Distress: Architecture to the Rescue International Conference on
Agile Software Development

Nord et al. (2014)

S33 X. Qiu and L. Zhang Test scenario generation for reliability tactics
from uml sequence diagram

Asia-Pacific Software
Engineering Conference

Qiu and Zhang
(2014b)

S34 S. Tahmasebipour and
S. M. Babamir

Ranking of Common Architectural Styles Based
on Availability Security and Performance
Quality Attributes

Journal of Computing and
Security

Tahmasebipour and
Babamir (2014)

S35 J. Chavarriaga, C.
Noguera, R. Casallas,
and V. Jonckers

Architectural tactics support in cloud
computing providers: The jelastic case

International ACM SIGSOFT
Conference on Quality of
Software Architectures

Chavarriaga et al.
(2014)

S36 G. Pedraza-García, H.
Astudillo, and D.
Correal

A methodological approach to apply security
tactics in software architecture design

IEEE Colombian Conference on
Communications and
Computing

Pedraza-Garcia et al.
(2014)

S37 X. Qiu and L. Zhang Specifying redundancy tactics as crosscutting
concerns using aspect-oriented modeling

Frontiers of Computer Science Qiu and Zhang
(2014a)

S38 G. Procaccianti, P.
Lago, and G. A. Lewis

A catalogue of green architectural tactics for
the cloud

IEEE International Symposium
on the Maintenance and
Evolution of Service-Oriented
and Cloud-Based Systems

Procaccianti et al.
(2014)

S39 S. Bellomo, N. Ernst,
R. Nord, and R.
Kazman

Toward design decisions to enable
deployability: Empirical study of three projects
reaching for the continuous delivery holy grail

Annual IEEE/IFIP International
Conference on Dependable
Systems and Networks

Bellomo et al. (2014)

S40 S. N. Lee, D. Ko, S.
Park, and S. Kim

An approach to building domain architectures
using domain component model and
architectural tactics

International Journal of
Engineering Systems Modelling
and Simulation

Lee et al. (2014)

S41 R. Nöel, G.
Pedraza-García, H.
Astudillo, and E. B.
Fernández

An exploratory comparison of security patterns
and tactics to harden systems

Ibero-American Conference
Software Engineering

Nöel et al. (2014)

S42 N. A. M. Alzahrani
and D. C. Petriu

Modeling fault tolerance tactics with reusable
aspects

International ACM SIGSOFT
Conference on Quality of
Software Architectures

Alzahrani and Petriu
(2015)

S43 S. Kim A quantitative and knowledge-based approach
to choosing security architectural tactics

International Journal Ad Hoc
and Ubiquitous Computing

Kim (2015)

S44 A. Alebrahim, S.
Fassbender, M.
Filipczyk, M.
Goedicke, and M.
Heisel

Towards a reliable mapping between
performance and security tactics and
architectural patterns

ACM International Conference
Proceeding Series

Alebrahim et al.
(2015)

S45 G. Lewis and P. Lago A catalog of architectural tactics for
cyber-foraging

International ACM SIGSOFT
Conference on Quality of
Software Architectures

Lewis and Lago
(2015b)

S46 M. B. Kjaergaard and
M. Kuhrmann

On architectural qualities and tactics for
mobile sensing

International ACM SIGSOFT
Conference on Quality of
Software Architectures

Kjærgaard and
Kuhrmann (2015)

S47 A. E. Sabry Decision Model for Software Architectural
Tactics Selection Based on Quality Attributes
Requirements

Procedia Computer Science Sabry (2015)

S48 E. B. Fernandez, H.
Astudillo, and G.
Pedraza-García

Revisiting Architectural Tactics for Security European Conference on
Software Architecture

Fernandez et al.
(2015)

S49 M. Mirakhorli and J.
Cleland-Huang

Modifications, tweaks and bug fixes in
architectural tactics

IEEE International Working
Conference on Mining Software
Repositories

Mirakhorli and
Cleland-Huang
(2015b)

19



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Table 13
Primary studies (part III).
ID Authors Title Venue Cite

S50 H. M. Chen, R.
Kazman, S. Haziyev,
V. Kropov, and D.
Chtchourov

Architectural Support for DevOps in a
Neo-Metropolis BDaaS Platform

IEEE Symposium on Reliable
Distributed Systems

Chen et al. (2015)

S51 J. Chavarriaga, C.
Noguera, R. Casallas,
and V. Jonckers

Managing trade-offs among architectural
tactics using feature models and
feature-solution graphs

Colombian Computing
Conference

Chavarriaga et al.
(2015)

S52 J. Ryoo, B. Malone, P.
A. Laplante, and P.
Anand

The Use of Security Tactics in Open Source
Software Projects

IEEE Transactions on Reliability Ryoo et al. (2016)

S53 S. Adam and A. Abran The software architecture mapping framework
for managing architectural knowledge

International Conference on
Software Engineering and
Knowledge Engineering

Adam and Abran
(2016)

S54 D. E. Krutz and M.
Mirakhorl

Architectural clones: toward tactical code reuse Annual ACM Symposium on
Applied Computing

Krutz and Mirakhorl
(2016)

S55 G. Pedraza-García, R.
Noel, S. Matalonga, H.
Astudillo, and E. B.
Fernández

Mitigating security threats using tactics and
patterns: a controlled experiment

European Conference on
Software Architecture
Workshops

Pedraza-García et al.
(2016)

S56 M. Kassab and G.
Destefanis

Estimating Development Effort for Software
Architectural Tactics

International Andrei Ershov
Informatics Conference

Kassab and Destefanis
(2015)

S57 D. Gesvindr and B.
Buhnova

Architectural tactics for the design of efficient
PaaS cloud applications

Working IEEE/IFIP Conference
on Software Architecture

Gesvindr and
Buhnova (2016)

S58 M. Mirakhorli and J.
Cleland-Huang

Detecting, Tracing and Monitoring
Architectural Tactics in Code

IEEE Transactions on Software
Engineering

Mirakhorli and
Cleland-Huang
(2015a)

S59 G. Márquez and H.
Astudillo

Selecting components assemblies from
non-functional requirements through tactics
and scenarios

International Conference of the
Chilean Computer Science
Society

Márquez and
Astudillo (2016)

S60 G. Márquez and H.
Astudillo

Selection of software components from
business objectives scenarios through
architectural tactics

IEEE/ACM International
Conference on Software
Engineering Companion

Márquez (2017)

S61 A. M. Alashqar, H. M.
El-Bakry, and A. A.
Elfetouh

A Framework for Selecting Architectural
Tactics Using Fuzzy Measures

International Journal of
Software Engineering and
Knowledge Engineering

Alashqar et al. (2017)

S62 R. Gopalakrishnan, P.
Sharma, M.
Mirakhorli, and M.
Galster

Can Latent Topics in Source Code Predict
Missing Architectural Tactics?

IEEE/ACM International
Conference on Software
Engineering

Gopalakrishnan et al.
(2017)

S63 J. C. S. Santos, A.
Peruma, M.
Mirakhorli, M.
Galstery, J. V. Vidal,
and A. Sejfia

Understanding Software Vulnerabilities Related
to Architectural Security Tactics: An Empirical
Investigation of Chromium PHP and
Thunderbird

IEEE International Conference
on Software Architecture

Santos et al. (2017)

S64 M. Salama, A.
Shawish, and R.
Bahsoon

Dynamic modelling of tactics impact on the
stability of self-aware cloud architectures

IEEE International Conference
on Cloud Computing

Salama et al. (2016)

S65 M. A. Al Imran, S. P.
Lee, and M. A. M.
Ahsan

Quality driven architectural solutions selection
approach through measuring impact factors

International Conference on
Electrical Engineering and
Computer Science

Al Imran et al. (2017)

S66 I. J. Mujhid, J. C.
Joanna, R.
Gopalakrishnan, and
M. Mirakhorli

A search engine for finding and reusing
architecturally significant code

Journal of Systems and
Software

Mujhid et al. (2017)

S67 F. Osses, G. Márquez,
M. M. Villegas, C.
Orellana, M. Visconti,
and H. Astudillo

Security tactics selection poker (TaSPeR): A
card game to select security tactics to satisfy
security requirements

European Conference on
Software Architecture:
Companion Proceedings

Osses et al. (2018b)

S68 F. Alizadeh
Moghaddam, G.
Procaccianti, G. A.
Lewis, and P. Lago

Empirical validation of cyber-foraging
architectural tactics for surrogate provisioning

Journal of Systems and
Software

Alizadeh Moghaddam
et al. (2018)

S69 J. Bogner, S. Wagner,
and A. Zimmermann

Using architectural modifiability tactics to
examine evolution qualities of Service- and
Microservice-Based Systems: An approach
based on principles and patterns

Software-Intensive
Cyber-Physical Systems

Bogner et al. (2019)

20



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Table 14
Primary studies (part IV).
ID Authors Title Venue Cite

S70 D. Gonzalez, F.
Alhenaki, and M.
Mirakhorli

Architectural security weaknesses in industrial
control systems (ICS) an empirical study based
on disclosed software vulnerabilities

IEEE International Conference
on Software Architecture

Gonzalez et al. (2019)

S71 G. Lewis, P. Lago, S.
Echeverría, and P.
Simoens

A tale of three systems: Case studies on the
application of architectural tactics for
cyber-foraging

Future Generation Computer
Systems

Lewis et al. (2019)

S72 G. Márquez, M. M.
Villegas, and H.
Astudillo

An Empirical Study of Scalability Frameworks
in Open Source Microservices-based Systems

International Conference of the
Chilean Computer Science
Society

Márquez et al. (2018)

S73 H. Cervantes, H.,
Kazman, R., Ryoo, J.,
Cho, J., Cho, G., Kim,
H., and Kang, J.

Data-Driven Selection of Security Application
Frameworks During Architectural Design

Annual Hawaii International
Conference on System Sciences

Cervantes et al.
(2019)

S74 C. Orellana, M. M.
Villegas, and H.
Astudillo

Mitigating security threats through the use of
security tactics to design secure cyber–physical
systems (CPS)

European Conference on
Software Architecture

Orellana et al. (2019)

S75 F. Wessling, C.
Ehmke, O. Meyer, and
V. Gruhn

Towards Blockchain Tactics: Building Hybrid
Decentralized Software Architectures

International Conference on
Software Architecture
Companion

Wessling et al. (2019)

S76 G. Márquez and H.
Astudillo

Identifying availability tactics to support
security architectural design of
microservice-based systems

European Conference on
Software Architecture

Márquez and
Astudillo (2019)

S77 C. Preschern, N.
Kajtazovic, and C.
Kreiner

Safety architecture pattern system with
security aspects

Transactions on Pattern
Languages of Programming IV

Preschern et al.
(2019)

S78 J. C. S. Santos, K.
Tarrit, A. Sejfia, M.
Mirakhorli, and M.
Galster

An empirical study of tactical vulnerabilities Journal of Systems and
Software

Santos et al. (2019)

S79 S. P. Nanda and H.
Reza

Deriving Scalability Tactics for Development of
Data-Intensive Systems

International Conference on
Information Technology–New
Generations

Nanda and Reza
(2020)

S80 G. Márquez, Y. Lazo,
and H. Astudillo

Evaluating Frameworks Assemblies in
Microservices-based Systems Using Imperfect
Information

IEEE International Conference
on Software Architecture
Companion

Márquez et al. (2020)

S81 M. Alenezi, A.
Agrawal, R. Kumar,
and R. A. Khan

Evaluating Performance of Web Application
Security through a Fuzzy Based Hybrid
Multi-Criteria Decision-Making Approach:
Design Tactics Perspective

IEEE Access Alenezi et al. (2020)

S82 Agrawal, A., Seh, A.
H., Baz, A., Alhakami,
H., Alhakami, W., Baz,
M., Rajeev, K. and
Khan, R. A.

Software security estimation using the hybrid
fuzzy ANP-TOPSIS approach: Design tactics
perspective

Symmetry Agrawal et al. (2020)

S83 Keim, J., Kaplan, A.,
Koziolek, A., and
Mirakhorli, M.

Does BERT Understand Code?–An Exploratory
Study on the Detection of Architectural Tactics
in Code

European Conference on
Software Architecture

Keim et al. (2020)

S84 Milhem, H., Weiss,
M., and Some, S. S.

Modeling and Selecting Frameworks in Terms
of Patterns, Tactics and System Qualities

International Journal of
Software Engineering and
Knowledge Engineerings

Milhem et al. (2020)

S85 Malavolta, I.,
Chinnappan, K.,
Swanborn, S., Lewis,
G. A., and Lago, P.

AMining the ROS ecosystem for green
architectural tactics in robotics and an
empirical evaluation

International Conference on
Mining Software Repositories

Malavolta et al.
(2021)

S86 Yánez, W., Bahsoon,
R., Zhang, Y., and
Kazman, R.

Architecting Internet of Things Systems with
Blockchain: A Catalog of Tactics

ACM Transactions on Software
Engineering and Methodology

Yánez et al. (2021)

S87 Bi, T., Liang, P., Tang,
A., and Xia, X.

Mining architecture tactics and quality
attributes knowledge in Stack Overflow

Journal of Systems and
Software

Bi et al. (2021)

S88 Valle, P. H. D., Garcés,
L., and Nakagawa, E.
Y.

Architectural strategies for interoperability of
software-intensive systems: practitioners’
perspective

Annual ACM Symposium on
Applied Computing

Valle et al. (2021)

S89 AlDaajeh, S. H.,
Harous, S., and
Alrabaee, S.

Fault-Detection Tactics for Optimized
Embedded Systems Efficiency

IEEE Access Aldaajeh et al. (2021)

S90 Shokri, A., Santos, J.,
and Mirakhorli, M.

ArCode: Facilitating the Use of Application
Frameworks to Implement Tactics and Patterns

International Conference on
Software Architecture

Shokri et al. (2021)

21



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Table 15
Primary studies (part V).
ID Authors Title Venue Cite

S91 Chinnappan, K.,
Malavolta, I., Lewis,
G. A., Albonico, M.,
and Lago, P.

Architectural Tactics for Energy-Aware
Robotics Software: A Preliminary Study

European Conference on
Software Architecture

Chinnappan et al.
(2021)

Fig. 11. Security tactics taxonomy proposed by S20 (a) and S48 (b).

Fig. 12. Deployability tactics taxonomy proposed by S39.

22



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Fig. 13. Safety tactics taxonomy proposed by S2 (a), S30 (b) and S7 (c).

Fig. 14. Fault-tolerance tactics taxonomy proposed by S4.

23



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Fig. 15. Scalability tactics taxonomy proposed by S19 (a) and S79 (b).

Fig. 16. Modifiability tactics taxonomy proposed by S69.

References

Adam, S., Abran, A., 2016. The software architecture mapping framework
for managing architectural knowledge. SEKE 357–362. http://dx.doi.org/10.
18293/SEKE2016-183.

Agrawal, A., Seh, A.H., Baz, A., Alhakami, H., Alhakami, W., Baz, M., Kumar, R.,
Khan, R.A., 2020. Software security estimation using the hybrid fuzzy ANP-
TOPSIS approach: design tactics perspective. Symmetry 12 (4), 598. http:
//dx.doi.org/10.3390/sym12040598.

Al-Daajeh, S.H., Al-Qutaish, R.E., Al-Qirem, F., 2011. Engineering dependability to
embedded systems software via tactics.

Al-Daajeh, S.H., Al-Qutaish, R.E., Al-Qirem, F., 2012. A tactic-based framework to
evaluate the relationships between the software product quality attributes.
Int. J. Softw. Eng. Knowl. Eng. 5 (1), 5–26.

Al Imran, M.A., Lee, S.P., Ahsan, M.M., 2017. Quality driven architectural solu-
tions selection approach through measuring impact factors. In: International
Conference on Electrical Engineering and Computer Science. ICECOS, pp.
131–136. http://dx.doi.org/10.1109/ICECOS.2017.8167119.

Alashqar, A.M., El-Bakry, H.M., Elfetouh, A.A., 2017. A framework for selecting

24



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

architectural tactics using fuzzy measures. Int. J. Softw. Eng. Knowl. Eng. 27
(3), 475–498. http://dx.doi.org/10.1142/S0218194017500176.

Aldaajeh, S.H., Harous, S., Alrabaee, S., 2021. Fault-detection tactics for optimized
embedded systems efficiency. IEEE Access 9, 91328–91340. http://dx.doi.org/
10.1109/ACCESS.2021.3091617.

Alebrahim, A., Fassbender, S., Filipczyk, M., Goedicke, M., Heisel, M., 2015.
Towards a reliable mapping between performance and security tactics, and
architectural patterns. In: Proceedings of the 20th European Conference on
Pattern Languages of Programs. p. 39. http://dx.doi.org/10.1145/2855321.
2855361.

Alenezi, M., Agrawal, A., Kumar, R., Khan, R.A., 2020. Evaluating performance
of web application security through a fuzzy based hybrid multi-criteria
decision-making approach: Design tactics perspective. IEEE Access 8,
25543–25556.

Alizadeh Moghaddam, F., Procaccianti, G., Lewis, G.A., Lago, P., 2018. Empirical
validation of cyber-foraging architectural tactics for surrogate provisioning.
J. Syst. Softw. 138, 37–51. http://dx.doi.org/10.1016/j.jss.2017.11.047.

Alpaydin, E., 2020. Introduction to Machine Learning. MIT Press, 1 Rogers Street
in Cambridge, MA 02142, USA.

Alzahrani, N.A.M., Petriu, D.C., 2015. Modeling fault tolerance tactics with
reusable aspects. In: 11th International ACM SIGSOFT Conference on Qual-
ity of Software Architectures. pp. 43–52. http://dx.doi.org/10.1145/2737182.
2737189.

Ampatzoglou, A., Bibi, S., Avgeriou, P., Chatzigeorgiou, A., 2020. Guidelines for
managing threats to validity of secondary studies in software engineering.
In: Contemporary Empirical Methods in Software Engineering. pp. 415–441.
http://dx.doi.org/10.1007/978-3-030-32489-6_15.

Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C., 2004. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans. Dependable
Secure Comput. 1 (1), 11–33. http://dx.doi.org/10.1109/TDSC.2004.2.

Bachmann, F., Bass, L., Klein, M., 2002. Lluminating the Fundamental Contributors
to Software Architecture Quality. Tech. Rep., Software Engineering Institute,
Carnegie-Mellon University.

Bachmann, F., Bass, L., Klein, M., 2003a. Deriving Architectural Tactics: A
Step Toward Methodical Architectural Design. No. CMU/SEI-2003-TR-004,
Carnegie-Mellon University, Software Engineering Institute.

Bachmann, F., Bass, L., Klein, M., 2003b. Moving from quality attribute require-
ments to architectural decisions. In: The Second International Workshop on
from Software Requirements to Architectures. STRAW, pp. 122–129.

Bass, L., 2016. ‘‘Deployability’’ in Software Quality Assurance. Morgan Kaufmann,
pp. xxiii–xxvii.

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practice (2nd
Edition). In: SEI Series in Software Engineering.

Bass, L., Clements, P., Kazman, R., 2013. Software Architecture in Practice (3rd
Edition). In: SEI Series in Software Engineering.

Bass, L., Clements, P., Kazman, R., 2021. Software Architecture in Practice (4th
Edition). In: SEI Series in Software Engineering.

Bass, L., Klein, M., Bachmann, F., 2000. Quality Attribute Design Primitives. Tech.
Rep., Software Engineering Institute, Carnegie-Mellon University.

Bass, L., Klein, M.H., Moreno, G.A., 2001a. Applicability of General Scenarios to
the Architecture Trade-Off Analysis Method. Tech. Rep., Software Engineering
Institute, Carnegie-Mellon University.

Bass, L., Moreno, G., et al., 2001b. Applicability of General Scenarios to the Ar-
chitecture Tradeoff Analysis Method. Tech. Rep., Carnegie-Mellon University
of Pittsburgh PA Software Engineering Institute.

Bellomo, S., Ernst, N., Nord, R., Kazman, R., 2014. Toward design decisions
to enable deployability: Empirical study of three projects reaching for
the continuous delivery holy grail. In: 4th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks. DSN, pp. 702–707. http:
//dx.doi.org/10.1109/DSN.2014.104.

Bi, T., Liang, P., Tang, A., Xia, X., 2021. Mining architecture tactics and quality
attributes knowledge in stack overflow. J. Syst. Softw. 180, 111005. http:
//dx.doi.org/10.1016/j.jss.2021.111005.

Blei, D.M., Ng, A.Y., Jordan, M.I., 2003. Latent dirichlet allocation. J. Mach. Learn.
Res. 3 (Jan), 993–1022.

Bogner, J., Wagner, S., Zimmermann, A., 2019. Using architectural modifiability
tactics to examine evolution qualities of service-and microservice-based
systems. SICS Softw.-Intensive Cyber-Physical Syst. 34 (2), 141–149. http:
//dx.doi.org/10.1007/s00450-019-00402-z.

Braun, V., Clarke, V., 2006. Using thematic analysis in psychology. Qual. Res.
Psychol. 3 (2), 77–101. http://dx.doi.org/10.1191/1478088706qp063oa.

Cañete-Valdeón, J.M., 2012. Annotating problem diagrams with architectural
tactics for reasoning on quality requirements. Inform. Process. Lett. 112 (16),
656–661. http://dx.doi.org/10.1016/j.ipl.2012.06.002.

Cervantes, H., Kazman, R., Ryoo, J., Cho, J., Cho, G., Kim, H., Kang, J., 2019.
Data-driven selection of security application frameworks during architectural
design. In: 52nd Hawaii International Conference on System Sciences. pp.
7331–7340.

Chavarriaga, J., Noguera, C.A., Casallas, R., Jonckers, V., 2014. Architectural tactics
support in cloud computing providers: the jelastic case. In: Proceedings
of the 10th International ACM Sigsoft Conference on Quality of Software
Architectures. pp. 13–22. http://dx.doi.org/10.1145/2602576.2602580.

Chavarriaga, J., Noguera, C., Casallas, R., Jonckers, V., 2015. Managing trade-
offs among architectural tactics using feature models and feature-solution
graphs. In: 10th Computing Colombian Conference. 10CCC, pp. 124–132.
http://dx.doi.org/10.1109/ColumbianCC.2015.7333406.

Chen, H.M., Kazman, R., Haziyev, S., Kropov, V., Chtchourov, D., 2015. Archi-
tectural support for DevOps in a neo-Metropolis BDaas platform. In: 34th
Symposium on Reliable Distributed Systems Workshop. SRDSW, pp. 25–30.
http://dx.doi.org/10.1109/SRDSW.2015.14.

Chinnappan, K., Malavolta, I., Lewis, G.A., Albonico, M., Lago, P., 2021. Archi-
tectural tactics for energy-aware robotics software: A preliminary study. In:
European Conference on Software Architecture. pp. 164–171.

Chung, L., Nixon, B.A., Yu, E., Mylopoulos, J., 2000. The NFR framework in action.
In: Non-Functional Requirements in Software Engineering. In: International
Series in Software Engineering, vol. 5, pp. 15–45. http://dx.doi.org/10.1007/
978-1-4615-5269-7_2.

Cleland-Huang, J., Settimi, R., Zou, X., Solc, P., 2006. The detection and classifi-
cation of non-functional requirements with application to early aspects. In:
IEEE International Requirements Engineering Conference. pp. 39–48. http:
//dx.doi.org/10.1109/RE.2006.65.

Devlin, J., Chang, M.W., Lee, K., Toutanova, K., 2018. BERT: Pre-Training of
Deep Bidirectional Transformers for Language Understanding. arXiv preprint
arXiv:1810.04805.

Fernandez, E.B., Astudillo, H., 2012. Should we use tactics or patterns to build
secure systems. In: First International Symposium on Software Architecture
and Patterns, in Conjunction with the 10th Latin American and Caribbean
Conference for Engineering and Technology. p. 8.

Fernandez, E.B., Astudillo, H., Pedraza-García, G., 2015. Revisiting architectural
tactics for security. In: European Conference on Software Architecture. pp.
55–69. http://dx.doi.org/10.1007/978-3-319-23727-5_5.

Gesvindr, D., Buhnova, B., 2016. Architectural tactics for the design of efficient
PaaS cloud applications. In: 13th Working IEEE/IFIP Conference on Software
Architecture. pp. 158–167. http://dx.doi.org/10.1109/WICSA.2016.42.

Gonzalez, D., Alhenaki, F., Mirakhorli, M., 2019. Architectural security weaknesses
in industrial control systems (ICS) an empirical study based on disclosed
software vulnerabilities. In: IEEE International Conference on Software
Architecture. ICSA, pp. 31–40. http://dx.doi.org/10.1109/ICSA.2019.00012.

Gopalakrishnan, R., Sharma, P., Mirakhorli, M., Galster, M., 2017. Can latent
topics in source code predict missing architectural tactics? In: Proceedings
of the 39th International Conference on Software Engineering. pp. 15–26.
http://dx.doi.org/10.1109/ICSE.2017.10.

Harrison, N.B., Avgeriou, P., 2008. Incorporating fault tolerance tactics in software
architecture patterns. In: Proceedings of the 2008 RISE/EFTS Joint Interna-
tional Workshop on Software Engineering for Resilient Systems. pp. 9–18.
http://dx.doi.org/10.1145/1479772.1479775.

Harrison, N.B., Avgeriou, P., 2010. How do architecture patterns and tactics
interact? A model and annotation. J. Syst. Softw. 83 (10), 1735–1758. http:
//dx.doi.org/10.1016/j.jss.2010.04.067.

Harrison, N.B., Avgeriou, P., Zdun, U., 2010. On the impact of fault tolerance
tactics on architecture patterns. In: Proceedings of the 2nd International
Workshop on Software Engineering for Resilient Systems. pp. 12–21. http:
//dx.doi.org/10.1145/2401736.2401738.

Hill, A.E., Nicholson, M., 2009. Safety tactics for reconfigurable process control
devices. In: International Conference on System Safety 2009. Incorporating
the SaRS Annual Conference. http://dx.doi.org/10.1049/cp.2009.1562.

ISO 25000 software and data quality, 2020. ISO IEC 25010, https://iso25000.
com/index.php/en/iso-25000-standards/iso-25010. (Accessed 19 September
2020).

Kassab, M., Destefanis, G., 2015. Estimating development effort for software
architectural tactics. International Andrei Ershov Memorial Conference on
Perspectives of System Informatics. pp. 158–169.

Kassab, M., El-Boussaidi, G., 2013. Towards quantifying quality, tactics and
architectural patterns interactions. SEKE 2013-January, 441–446.

Kassab, M., Mazzara, M., Lee, J., Succi, G., 2018. Software architectural patterns
in practice: an empirical study. Innov. Syst. Softw. Eng. 14 (4), 263–271.
http://dx.doi.org/10.1007/s11334-018-0319-4.

Kazman, R., Kruchten, P., 2012a. Design approaches for taming complexity. In:
IEEE International Systems Conference. pp. 1–6. http://dx.doi.org/10.1109/
SysCon.2012.6189488.

Kazman, R., Kruchten, P., 2012b. Design approaches for taming complexity. In:
Systems Conference. SysCon, pp. 1–6. http://dx.doi.org/10.1109/SysCon.2012.
6189488.

Keim, J., Kaplan, A., Koziolek, A., Mirakhorli, M., 2020. Does BERT understand
code?–An exploratory study on the detection of architectural tactics in
code. In: European Conference on Software Architecture. pp. 220–228. http:
//dx.doi.org/10.1007/978-3-030-58923-3_15.

25



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Kim, D.K., 2007. The role-based metamodeling language for specifying design
patterns. In: Design Pattern Formalization Techniques. p. 23. http://dx.doi.
org/10.4018/978-1-59904-219-0.ch009.

Kim, S., 2015. A quantitative and knowledge–based approach to choosing
security architectural tactics. Int. J. Ad Hoc Ubiquitous Comput. 18 (1–2),
45–53. http://dx.doi.org/10.1504/IJAHUC.2015.067780.

Kim, S., Kim, D.K., Lu, L., Park, S.Y., 2008. A tactic-based approach to embodying
non-functional requirements into software architectures. In: 12th Interna-
tional IEEE Enterprise Distributed Object Computing Conference. EDOC’08,
(139–148), http://dx.doi.org/10.1109/EDOC.2008.18.

Kim, S., Kim, D.K., Lu, L., Park, S., 2009. Quality-driven architecture development
using architectural tactics. J. Syst. Softw. 82 (8), 1211–1231. http://dx.doi.
org/10.1016/j.jss.2009.03.102.

Kim, S., Kim, D.K., Park, S., 2010. Tool support for quality-driven development
of software architectures. In: Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering. pp. 127–130. http://dx.doi.
org/10.1145/1858996.1859018.

Kitchenham, B., Charters, S., 2007. Guidelines for Performing Systematic Liter-
ature Reviews in Software Engineering. Technical Report, EBSE Technical
Report EBSE-2007-01.

Kjærgaard, M.B., Kuhrmann, M., 2015. On architectural qualities and tactics
for mobile sensing. In: Proceedings of the 11th International ACM SIGSOFT
Conference on Quality of Software Architectures. pp. 63–72. http://dx.doi.
org/10.1145/2737182.2737196.

Koziolek, A., Koziolek, H., Reussner, R., 2011. Peropteryx: automated appli-
cation of tactics in multi-objective software architecture optimization. In:
Proceedings of the Joint ACM SIGSOFT Conference. QoSA, pp. 33–42. http:
//dx.doi.org/10.1145/2000259.2000267.

Krutz, D.E., Mirakhorl, M., 2016. Architectural clones: toward tactical code reuse.
In: Proceedings of the 31st Annual ACM Symposium on Applied Computing.
pp. 1480–1485. http://dx.doi.org/10.1145/2851613.2851787.

Kuhrmann, M., Diebold, P., Münch, J., 2016. Software process improvement: a
systematic mapping study on the state of the art. PeerJ Comput. Sci. 2, e62.
http://dx.doi.org/10.7717/peerj-cs.62.

Lee, S.N., Ko, D., Park, S., Kim, S., 2014. An approach to building domain
architectures using domain component model and architectural tactics. Int.
J. Eng. Syst. Model. 6 (1–2), 54–61. http://dx.doi.org/10.1504/IJESMS.2014.
058424.

Lewis, G., Lago, P., 2015a. Architectural tactics for cyber-foraging: Results of a
systematic literature review. J. Syst. Softw. 107 (158–186), http://dx.doi.org/
10.1016/j.jss.2015.06.005.

Lewis, G., Lago, P., 2015b. A catalog of architectural tactics for cyber-foraging.
In: 11th International ACM SIGSOFT Conference on Quality of Software
Architectures. QoSA, pp. 53–62. http://dx.doi.org/10.1145/2737182.2737188.

Lewis, G., Lago, P., Echeverría, S., Simoens, P., 2019. A tale of three systems: Case
studies on the application of architectural tactics for cyber-foraging. Future
Gener. Comput. Syst. 96, 119–147. http://dx.doi.org/10.1016/j.future.2019.01.
052.

Li, S., Zhang, H., Jia, Z., Zhong, C., Zhang, C., Shan, Z., Shen, J., Babar, M.A.,
2020. Understanding and addressing quality attributes of microservices
architecture: A systematic literature review. Inf. Softw. Technol. 106449.
http://dx.doi.org/10.1016/j.infsof.2020.106449.

Malavolta, I., Chinnappan, K., Swanborn, S., Lewis, G.A., Lago, P., 2021. Mining the
ROS ecosystem for green architectural tactics in robotics and an empirical
evaluation. In: International Conference on Mining Software Repositories.
MSR, pp. 300–311. http://dx.doi.org/10.1109/MSR52588.2021.00042.

Marew, T., Lee, J.S., Bae, D.H., 2009. Tactics based approach for integrating non-
functional requirements in object-oriented analysis and design. J. Syst. Softw.
82 (10), 1642–1656. http://dx.doi.org/10.1016/j.jss.2009.03.032.

Márquez, G., 2017. Selection of software components from business objec-
tives scenarios through architectural tactics. In: Proceedings of the 39th
International Conference on Software Engineering Companion. pp. 441–444.
http://dx.doi.org/10.1109/ICSE-C.2017.35.

Márquez, G., Astudillo, H., 2016. Selecting components assemblies from non-
functional requirements through tactics and scenarios. In: 35th International
Conference of the Chilean Computer Science Society. SCCC, pp. 1–11. http:
//dx.doi.org/10.1109/SCCC.2016.7836020.

Márquez, G., Astudillo, H., 2019. Identifying availability tactics to support secu-
rity architectural design of microservice-based systems. In: 13th European
Conference on Software Architecture. 2, http://dx.doi.org/10.1145/3344948.
3344996.

Márquez, G., Astudillo, H., Kazman, R., 2022. Architectural Tactics in Software
Architecture: A Systematic Mapping Study - Study Protocol. Zenodo, http:
//dx.doi.org/10.5281/zenodo.7290575.

Márquez, G., Lazo, Y., Astudillo, H., 2020. Evaluating frameworks assemblies in
microservices-based systems using imperfect information. In: IEEE Interna-
tional Conference on Software Architecture Companion. ICSA-C, pp. 250–257.
http://dx.doi.org/10.1109/ICSA-C50368.2020.00049.

Márquez, G., Villegas, M.M., Astudillo, H., 2018. An empirical study of scal-
ability frameworks in open source microservices-based systems. In: 37th
International Conference of the Chilean Computer Science Society. SCCC,
http://dx.doi.org/10.1109/SCCC.2018.8705256.

Milhem, H., Weiss, M., Some, S.S., 2020. Modeling and selecting frameworks in
terms of patterns, tactics and system qualities. Int. J. Softw. Eng. Knowl. Eng.
30 (11n12), 1819–1850. http://dx.doi.org/10.1142/S021819402040032X.

Mirakhorli, M., 2013. Preventing erosion of architectural tactics through their
strategic implementation, preservation, and visualization. In: International
Conference on Automated Software Engineering. ASE, pp. 762–765. http:
//dx.doi.org/10.1109/ASE.2013.6693152.

Mirakhorli, M., Carvalho, J., Cleland-Huang, J., Mäder, P., 2013. A domain-
centric approach for recommending architectural tactics to satisfy quality
concerns. In: 3rd International Workshop on the Twin Peaks of Requirements
and Architecture. TwinPeaks, pp. 1–8. http://dx.doi.org/10.1109/TwinPeaks-
2.2013.6617352.

Mirakhorli, M., Cleland-Huang, J., 2011. Using tactic traceability information
models to reduce the risk of architectural degradation during system main-
tenance. In: 27th IEEE International Conference on Software Maintenance.
ICSM, pp. 123–132. http://dx.doi.org/10.1109/ICSM.2011.6080779.

Mirakhorli, M., Cleland-Huang, J., 2015a. Detecting, tracing, and monitoring
architectural tactics in code. IEEE Trans. Softw. Eng. 42 (3), 205–220. http:
//dx.doi.org/10.1109/TSE.2015.2479217.

Mirakhorli, M., Cleland-Huang, J., 2015b. Modifications, tweaks, and bug fixes
in architectural tactics. In: IEEE/ACM 12th Working Conference on Mining
Software Repositories. pp. 377–380. http://dx.doi.org/10.1109/MSR.2015.44.

Mirakhorli, M., Fakhry, A., Grechko, A., Wieloch, M., Cleland-Huang, J., 2014.
Archie: A tool for detecting, monitoring, and preserving architecturally signif-
icant code. In: 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineerin. pp. 739–742. http://dx.doi.org/10.1145/2635868.
2661671.

Mirakhorli, M., Mäder, P., Cleland-Huang, J., 2012a. Variability points and design
pattern usage in architectural tactics. In: Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engineering.
p. 52. http://dx.doi.org/10.1145/2393596.2393657.

Mirakhorli, M., Shin, Y., Cleland-Huang, J., Cinar, M., 2012b. A tactic-centric
approach for automating traceability of quality concerns. In: International
Conference on Software Engineering. ICSE, pp. 639–649. http://dx.doi.org/10.
1109/ICSE.2012.6227153.

Mirakhorli, M., Shin, Y., Cleland-Huang, J., Cinar, M., 2012c. A tactic-centric ap-
proach for automating traceability of quality concerns. In: 34th International
Conference on Software Engineering. ICSE, pp. 639–649. http://dx.doi.org/10.
1109/ICSE.2012.6227153.

Moløkken-Østvold, K., Nils, C.H., Hans, C.B., 2008. Using planning poker for
combining expert estimates in software projects. J. Syst. Softw. 81 (12),
2106–2117. http://dx.doi.org/10.1016/j.jss.2008.03.058.

Mujhid, I.J., Santos, J.C., Gopalakrishnan, R., Mirakhorli, M., 2017. A search engine
for finding and reusing architecturally significant code. J. Syst. Softw. 130,
81–93. http://dx.doi.org/10.1016/j.jss.2016.11.034.

Nanda, S.P., Reza, H., 2020. Deriving scalability tactics for development
of data-intensive systems. In: International Conference on Information
Technology–New Generations. pp. 285–290. http://dx.doi.org/10.1007/978-3-
030-43020-7_38.

Nöel, R., Pedraza-García, G., Astudillo, H., Fernández, E.B., 2014. An exploratory
comparison of security patterns and tactics to harden systems. In: Pro-
ceedings of the 17th Ibero-American Conference Software Engineering. pp.
378–391.

Nord, R.L., Ozkaya, I., Kruchten, P., 2014. Agile in distress: Architecture to the
rescue. In: International Conference on Agile Software Development. pp.
43–57. http://dx.doi.org/10.1007/978-3-319-14358-3_5.

Orellana, C., Villegas, M.M., Astudillo, H., 2019. Mitigating security threats
through the use of security tactics to design secure cyber-physical sys-
tems (CPS). In: 13th European Conference on Software Architecture. 2, pp.
109–115. http://dx.doi.org/10.1145/3344948.3344994.

Osses, F., Márquez, G., Astudillo, H., 2018a. An exploratory study of academic
architectural tactics and patterns in microservices: A systematic literature
review. In: Iberoamerican Conference on Software Engineering. CIbSE, pp.
71–84.

Osses, F., Márquez, G., Villegas, M.M., Orellana, C., Visconti, M., Astudillo, H.,
2018b. Security tactics selection poker (TaSPeR) a card game to select secu-
rity tactics to satisfy security requirements. In: 12th European Conference on
Software Architecture: Companion Proceedings. pp. 1–7. http://dx.doi.org/10.
1145/3241403.3241459.

Paradis, C., Kazman, R., Tamburri, D.A., 2021. Architectural tactics for energy
efficiency: Review of the literature and research roadmap. In: 54th Hawaii
International Conference on System Sciences. p. 7197, URL http://hdl.handle.
net/10125/71488.

Pedraza-Garcia, G., Astudillo, H., Correal, D., 2014. A methodological approach
to apply security tactics in software architecture design. In: IEEE Colombian
Conference on Communications and Computing. COLCOM, pp. 1–8. http:
//dx.doi.org/10.1109/ColComCon.2014.6860432.

26



G. Márquez, H. Astudillo and R. Kazman The Journal of Systems & Software 197 (2023) 111558

Pedraza-García, G., Noël, R., Matalonga, S., Astudillo, H., Fernandez, E.B., 2016.
Mitigating security threats using tactics and patterns: a controlled ex-
periment. In: Proccedings of the 10th European Conference on Software
Architecture Workshops. p. 37. http://dx.doi.org/10.1145/2993412.3007552.

Petersen, K., Feldt, R., Mujtaba, S., Mattsson, M., 2008. Systematic mapping stud-
ies in software engineering. In: 12th International Conference on Evaluation
and Assessment in Software Engineering. EASE, pp. 1–10. http://dx.doi.org/
10.14236/ewic/EASE2008.8.

Petersen, K., Vakkalanka, S., Kuzniarz, L., 2015. Guidelines for conducting system-
atic mapping studies in software engineering: An update. Inf. Softw. Technol.
64, 1–18.

Preschern, C., 2012. Catalog of security tactics linked to common criteria
requirements. In: Proceedings of the 19th Conference on Pattern Languages
of Programs. p. 7.

Preschern, C., Kajtazovic, N., Kreiner, C., 2013. Catalog of safety tactics in the
light of the IEC 61508 safety lifecycle. In: Proceedings of VikingPLoP 2013
Conference. p. 79.

Preschern, C., Kajtazovic, N., Kreiner, C., 2019. Safety architecture pattern system
with security aspects. Trans. Pattern Lang. Program. IV 22–75. http://dx.doi.
org/10.1007/978-3-030-14291-9_2.

Procaccianti, G., Lago, P., Lewis, G.A., 2014. A catalogue of green architectural
tactics for the cloud. In: 8th International Symposium on the Maintenance
and Evolution of Service-Oriented and Cloud-Based Systems. MESOCA, pp.
29–36. http://dx.doi.org/10.1109/MESOCA.2014.12.

Qiu, X., Zhang, L., 2013. Providing support for specifying redundancy tactics
using aspect-oriented modeling. In: 13th International Conference on Quality
Software. pp. 183–186. http://dx.doi.org/10.1109/QSIC.2013.61.

Qiu, X., Zhang, L., 2014a. Specifying redundancy tactics as crosscutting concerns
using aspect-oriented modeling. Front. Comput. Sci. 8 (6), 977–995. http:
//dx.doi.org/10.1007/s11704-014-3390-5.

Qiu, X., Zhang, L., 2014b. Test scenario generation for reliability tactics from UML
sequence diagram. In: 21st Asia-Pacific Software Engineering Conference. 1,
(11–18), http://dx.doi.org/10.1109/APSEC.2014.11.

Reza, H., Jurgens, D., White, J., Anderson, J., Peterson, J., 2005. An architectural
design selection tool based on design tactics, scenarios and nonfunctional
requirements. In: IEEE International Conference on Electro Information
Technology. pp. 6–pp. http://dx.doi.org/10.1109/EIT.2005.1627052.

Richards, M., Ford, N., 2020. Fundamentals of Software Architecture: An
Engineering Approach. O’Reilly.

Ryoo, J., Laplante, P., Kazman, R., 2010. A methodology for mining security tactics
from security patterns. In: 43rd Hawaii International Conference on System
Sciences. HICSS, pp. 1–5. http://dx.doi.org/10.1109/HICSS.2010.18.

Ryoo, J., Laplante, P., Kazman, R., 2012. Revising a security tactics hierarchy
through decomposition, reclassification, and derivation. In: IEEE Sixth Inter-
national Conference on Software Security and Reliability Companion. SERE-C,
pp. 85–91. http://dx.doi.org/10.1109/SERE-C.2012.18.

Ryoo, J., Malone, B., Laplante, P.A., Anand, P., 2016. The use of security tactics
in open source software projects. IEEE Trans. Reliab. 65 (3), 1195–1204.
http://dx.doi.org/10.1109/TR.2015.2500367.

Sabry, A.E., 2015. Decision model for software architectural tactics selection
based on quality attributes requirements. Procedia Comput. Sci. 65, 422–431.
http://dx.doi.org/10.1016/j.procs.2015.09.111.

Salama, M., Shawish, A., Bahsoon, R., 2016. Dynamic modelling of tactics
impact on the stability of self-aware cloud architectures. In: International
Conference on Cloud Computing. CLOUD, pp. 871–875. http://dx.doi.org/10.
1109/CLOUD.2016.0126.

Sanchez, A., Aguiar, A., Barbosa, L.S., Riesco, D., 2012. Analysing tactics in
architectural patterns. In: Software Engineering Workshop. SEW, pp. 32–41.
http://dx.doi.org/10.1109/SEW.2012.10.

Santos, J.C., Peruma, A., Mirakhorli, M., Galster, M., Vidal, J.V., Sejfia, A., 2017.
Understanding software vulnerabilities related to architectural security tac-
tics: An empirical investigation of chromium, PHP and thunderbird. In:
International Conference on Software Architecture. ICSA, pp. 69–78. http:
//dx.doi.org/10.1109/ICSA.2017.39.

Santos, J.C., Tarrit, K., Sejfia, A., Mirakhorli, M., Galster, M., 2019. An empirical
study of tactical vulnerabilities. J. Syst. Softw. 149 (263–284), http://dx.doi.
org/10.1016/j.jss.2018.10.030.

Shaw, M., 2003. Writing good software engineering research papers. In: Inter-
national Conference on Software Engineering. pp. 726–736. http://dx.doi.org/
10.1109/ICSE.2003.1201262.

Shokri, A., Santos, J., Mirakhorli, M., 2021. Arcode: Facilitating the use of
application frameworks to implement tactics and patterns. arXiv preprint
arXiv:2102.08372.

Spivey, J.M., Abrial, J.R., 1992. The Z Notation. Prentice Hall, Hemel Hempstead.
Stal, M., 2012. Faster, Better, Higher – But How? https://www.infoq.com/articles/

add-nfrs/.
System Safety Engineering, Software safety, https://www.

systemsafetyengineering.com/software-safety.html.
Tahmasebipour, S., Babamir, S.M., 2014. Ranking of common architectural styles

based on availability, security and performance quality attributes. J. Comput.
Secur. 1 (2).

Tarvainen, P., 2008. Adaptability evaluation at software architecture level. Open
Softw. Eng. J. 2 (1), http://dx.doi.org/10.2174/1874107X00802010001.

The MITRE Corporation, 2020. Common Vulnerabilities and Exposures (CVE),
https://cve.mitre.org. (Accessed 27 August 2020).

Ullah, F., Babar, M.A., 2019. Architectural tactics for big data cybersecurity
analytics systems: a review. J. Syst. Softw. 151, 81–118. http://dx.doi.org/
10.1016/j.jss.2019.01.051.

Valle, P.H.D., Garcés, L., Nakagawa, E.Y., 2021. Architectural strategies for in-
teroperability of software-intensive systems: practitioners’ perspective. In:
Annual ACM Symposium on Applied Computing. pp. 1399–1408. http://dx.
doi.org/10.1145/3412841.3442015.

Wessling, F., Ehmke, C., Meyer, O., Gruhn, V., 2019. Towards blockchain tactics:
Building hybrid decentralized software architectures. In: IEEE International
Conference on Software Architecture Companion. ICSA-C, pp. 234–237. http:
//dx.doi.org/10.1109/ICSA-C.2019.00048.

White, J., Galindo, J.A., Saxena, T., Dougherty, B., Benavides, D., Schmidt, D.C.,
2014. Evolving feature model configurations in software product lines. J. Syst.
Softw. 87, 119–136. http://dx.doi.org/10.1016/j.jss.2013.10.010.

Wieringa, R., Maiden, N., Mead, N., Rolland, C., 2006. Requirements engineering
paper classification and evaluation criteria: a proposal and a discussion.
Requir. Eng. 11 (1), 102–107.

Wohlin, C., 2014. Guidelines for snowballing in systematic literature studies and
a replication in software engineering. In: Proceedings of the 18th Interna-
tional Conference on Evaluation and Assessment in Software Engineering.
pp. 1–10. http://dx.doi.org/10.1145/2601248.2601268.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A., 2012.
Experimentation in Software Engineering. Springer Science and Business
Media.

Wu, W., Kelly, T., 2004. Safety tactics for software architecture design. In:
Computer Software and Applications Conference. COMPSAC, pp. 368–375.
http://dx.doi.org/10.1109/CMPSAC.2004.1342860.

Wyeth, A., Zhang, C., 2010. Formal specification of software architecture security
tactics. In: International Conference on Software Engineering and Knowledge
Engineering. pp. 172–175.

Yánez, W., Bahsoon, R., Zhang, Y., Kazman, R., 2021. Architecting internet of
things systems with blockchain: A catalog of tactics. In: ACM Transactions
on Software Engineering and Methodology. TOSEM, 30, (3), pp. 1–46. http:
//dx.doi.org/10.1145/3442412.

Gastón Márquez is a researcher fellow at the Department of Electronics
and Informatics in Universidad Técnica Federico Santa María, Chile. His re-
search is focused on architectural tactics, architectural patterns, microservice
architectures, clinical software, and telehealth systems. He has published in
several international conferences, journals and has participated in international
software architecture schools. He also participated as a Research Visitor at the
Rochester Institute of Technology (RIT), Rochester, NY, USA, and the Université
de Technologie de Compiègne (UTC), Compiègne, France. Before becoming a
researcher, he worked in financial companies for five years.

Hernán Astudillo received the Ph.D. degree in information and computer
science from Georgia Tech, in 1995. He has been an Informatics Engineer with
UTFSM, since 1988. He worked several years as a Lead or Senior Applications
Architect for consulting companies in the USA and Chile. He is also the Principal
Investigator of the Toeska Research and Development Team, which conducts
teaching, research, and technology transfer in software architecture, semantic
software systems and software process improvement, and their application in
e-governance and heritage computing. He is currently a Professor of informatics
with the Universidad Técnica Federico Santa María (UTFSM), the highestranked
Chilean University by Times Higher Education. His research interests include
identification, recovery, and reuse of architectural decisions and architectural
knowledge (especially architectural tactics). He is a member of the IFIP TC2
(software engineering) and the Chile Mirror Committee for ISO TC3 (Intelligent
Transportation Systems [ITS]). He was the Founding President of ArquiTIC the
Chilean association of IT architects.

Rick Kazman is a Professor at the University of Hawaii and a Research
Scientist at the Software Engineering Institute of Carnegie Mellon University. His
primary research interests are software architecture, design and analysis tools,
software visualization, and software engineering economics. Kazman has created
several highly influential methods and tools for architecture analysis, including
the SAAM (Software Architecture Analysis Method), the ATAM (Architecture
Tradeoff Analysis Method), the CBAM (Cost–Benefit Analysis Method) and the
Dali and Titan tools. He is the author of over 200 publications, and co-author of
several books, including Software Architecture in Practice, Designing Software
Architectures: A Practical Approach, Evaluating Software Architectures: Methods
and Case Studies, and Ultra-Large-Scale Systems: The Software Challenge of the
Future. His research has been cited over 20,000 times, according to Google
Scholar.

27


